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Local mean decomposition (LMD) is widely used in signal processing and fault diagnosis of rotating 
machinery as an adaptive signal processing method. It is developed from the popular empirical mode 
decomposition (EMD). Both of them have an open problem of end effects, which influences the 
performance of the signal decomposition and distort the results. Using the cyclostationary property 
of a vibration signal generated by rotating machinery, a novel signal waveform extension method is 
proposed to solve this problem. The method mainly includes three steps: waveform segmentation, 
spectral coherence comparison, and waveform extension. Its main idea is to automatically search the 
inside segment having similar frequency spectrum to one end of the analyzed signal, and then use 
its successive segment to extend the waveform, so that the extended signal can maintain temporal 
continuity in time domain and spectral coherence in frequency domain. A simulated signal is used to 
illustrate the proposed extension method and the comparison with the popular mirror extension and 
neural-network-based extension methods demonstrates its better performance on waveform extension. 
After that, combining the proposed extension method with normal LMD, the improved LMD method is 
applied to three experimental vibration signals collected from different rotating machines. The results 
demonstrate that the proposed waveform extension method based on spectral coherence can well extend 
the vibration signal, accordingly, errors caused by end effects would not distort the signal as well as its 
decomposition results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

To extract the feature signal for fault diagnosis of rotating ma-
chinery, many time frequency analysis methods have been de-
veloped, including the short time Fourier transform (STFT), the 
Wigner Ville distribution (WVD), the wavelet transform (WT), and 
so on, in which the wavelet transform method is the most com-
monly used, but one of its major problems is the non-adaptive 
basis. For analyzing a vibration signal, an adaptive signal process-
ing method is expected to reveal the overlapping in time and fre-
quency components and adaptively disassemble it into some sim-
ple signals, so that the feature signal of interest can be individu-
ally analyzed without the influence by other signals. The empirical 
mode decomposition (EMD) [1] method and the local mean de-
composition (LMD) [2] are indicated by the many literatures to be 
good and popular adaptive methods for processing nonlinear and 
non-stationary signals, such as [3–5] for rotating machinery, [6] for 
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voice signal, [7] for EEG signal, and so on. Using the EMD method, 
a multi-component signal is adaptively decomposed into some 
simpler components with amplitude and frequency modulated pa-
rameters [8]. Similarly, the LMD method decomposes it into a 
series of mono-components, called product functions (PFs), each 
of which is essentially an amplitude-modulated and frequency-
modulated (AM–FM) signal [5,9,10].

Although these two methods have shown to be quite versa-
tile in a broad range of applications, one of open problems to be 
solved is end effects [11–13]. During the decomposition, the signal 
extraction needs to identify the extrema of the analyzed signal. 
The interior extrema are easily identified. However, near the two 
end points, errors would be involved in the analyzed signal if the 
end point(s) is not a local maximum or minimum. Some efforts 
have been made to solve this problem. A sliding window fitting 
method [14,15] was proposed to analyze the signal within a slid-
ing window, in which the analysis is reliable. Such technique of 
sliding window has been successfully applied to analyze data in 
Fourier analysis using various windows and continuous wavelet 
analyses. However, the determination of reliable windows is of-
ten analysis-method-related but not related to the analyzed signal 
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itself. Accordingly, it must lead to throwing away some precious 
information contained in the signal near the ends [16].

Another solution to solve the problem of end effects is the ex-
tension of the analyzed signal, which is still the best basic solution. 
The extension based on characteristics of signal waveforms was 
initially proposed by Huang et al. [1]. They added characteristics 
waves to the treatment of end effects, in which the extra points 
are determined by the average of n-waves in the immediate neigh-
borhood of the ends, and they did not mention how to determine 
an appropriate characteristic wave. The main idea for other exten-
sion methods is to extract the features near ends from all available 
samples to extend the signal, including feature-based extension 
(e.g. the local straight-line extension [16], self-similarity [17], Her-
mitian polynomials for upper and lower envelopes [18]), mirror 
images (e.g. axis-symmetry signal extension (ASSE) [19]), predic-
tion methods (e.g. artificial neural network (ANN) [20], support 
vector regression (SVR) machine [21]), pattern comparison (e.g. an 
improved slope-based method [22]), and so on. Prediction meth-
ods can provide good performance on data extension, however, 
such computational intelligence based methods have their own 
shortcomings, including local minima and over-fitting in ANN and 
sensitiveness to parameter selection in both SVR and ANN. Lin et 
al. [23] proposed an approach that couples the mirror extension 
with the extrapolation prediction of SVR function to learn the fea-
ture of sample points near the ends, so that advantages of these 
two approaches can be used to guard result of the elimination of 
end effects in the EMD.

While methods for extending data vary, the essence of these 
methods is to add some extra points with minimal interior pertur-
bations and extend the signal implicitly or explicitly beyond the 
existing range. These methods are based on an assumption that 
the extending data will repeat the form or feature of the existing 
data. The reliability of the estimation at a given point will sharply 
decrease as its distance away from the known data set increases, 
and thus it is necessary to be careful in expanding a signal only by 
adding the extrapolation data to it [23]. Otherwise, errors caused 
by the extension would propagate from the end to the interior of 
the data and even cause severe deterioration of the whole signal.

After comparing the above extension methods, the mirror im-
age extension is easier to be put into practice, and the exten-
sion based on characteristics of signal waveforms seems to be 
more appropriate for the requirement to describe the complexity 
of problems [23]. For most of vibration signals collected by ro-
tating machinery, the nonlinear and non-stationary properties are 
definite, which makes the extension based on the characteristics 
of the signal difficult. It is necessary to develop a method with 
good extension performance as well as easy operation to imple-
ment. That is the aim of this paper. Considering that the vibration 
signal collected from rotating machinery is a cyclostationary sig-
nal (periodic modulations of random phenomena by the rotating 
parts) [24,25], this paper proposes a novel spectral-feature-based 
waveform extension method to eliminate end effects. Using the 
proposed method, the part of the signal waveform that has similar 
frequency spectrum to one signal end can be automatically found, 
and then its successive waveform can be used to extend the sig-
nal. As a result, the signal keeps its cyclostationary property, and 
errors would not accumulate during the signal decomposition.

The rest of the paper is organized as follows. Section 2 briefly 
introduces the procedure of the LMD method and then illustrates 
its problem of end effects. Section 3 proposes a novel waveform 
extension method based on the spectral coherence. After that, an 
improved LMD method is designed. In this section, a simulated 
signal would be used to illustrate the proposed extension method 
and compare with other two popular extension methods. Section 4
uses three experimental vibration signals collected from different 

rotating machines to validate the effectiveness of the improved 
LMD method. The conclusions are drawn in Section 5.

2. Local mean decomposition and its end effects

2.1. LMD method

After using the LMD method, a multi-component signal is rep-
resented as a set of product functions (PFs), each of which is the 
product of an envelope signal and a purely frequency modulated 
signal. For a signal x(t), the procedure of its decomposition pro-
cess is described as follows [2,5]:

(1) Find out all the local extrema ni and calculate the mean 
of two successive extrema ni and ni+1. The i-th mean value mi is 
then given by

mi = ni + ni+1

2
. (1)

All mean values mi are connected by straight lines. The lo-
cal means are then smoothed using moving averaging to form a 
smoothly varying continuous local mean function m11(t).

(2) The i-th envelope estimate ai is given by

ai = |ni − ni+1|
2

. (2)

The local envelope estimates are smoothed in the same way as 
the local means to derive the envelope function a11(t).

(3) Subtract the local mean function m11(t) from the original 
signal x(t) and the resulting signal, h11(t), is given by

h11(t) = x(t) − m11(t), (3)

and h11(t) is then divided by the envelope function a11(t), result-
ing in s11(t).

s11(t) = h11(t)

a11(t)
. (4)

If the envelope function a12(t) of s11(t) equals to 1, the pro-
cedure stops and s11(t) is a purely frequency modulated signal. If 
not, regard s11(t) as the original signal and repeat the above steps 
until s1n(t) is a purely frequency modulated signal, namely, the en-
velope function a1(n+1)(t) of s1n(t) equals to 1. Therefore
⎧⎪⎪⎨
⎪⎪⎩

h11(t) = x(t) − m11(t),
h12(t) = s11(t) − m12(t),
...

h1n(t) = s1(n−1)(t) − m1n(t),

(5)

where
⎧⎪⎪⎨
⎪⎪⎩

s11(t) = h11(t)/a11(t),
s12(t) = h12(t)/a12(t),
...

s1n(t) = h1n(t)/a1n(t).

(6)

(4) An envelope signal is derived by multiplying together the 
successive envelope estimates obtained during the iterative process 
described above,

a1(t) = a11(t)a12(t) · · ·a1n(t) =
n∏

q=1

a1q(t). (7)

This final envelope signal is then multiplied by the fre-
quency modulated signal to form the first product function PF1(t), 
which is a mono-component amplitude-modulated and frequency-
modulated signal.

PF1(t) = a1(t)s1n(t). (8)
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