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This paper concerns a wireless multichannel neural recording system using a compressed sensing 
technique to compress the recorded data. We put forth a single and a multichannel system applying 
a Minimum Euclidean or Manhattan Distance Cluster-based (MDC) deterministic compressed sensing 
matrix. The single-channel signal processing system is composed of spike detection and data compression 
blocks. For the construction of the MDC matrix, the distance σ is an important parameter, which can take 
a value of 4 or 5. In addition, the sharing strategy is used to construct a multichannel system, and we 
analyze the influence of the number of the channels; scan rate on the reconstruction error, compression 
rate and power consumption; the influence of the signal-to-noise ratio; and reconstruction performance 
on neural signals. Based on the results, a 256-channel digital signal processing system, implemented in 
a 130-nm CMOS process, is proposed. This system has power consumption per channel of 12.5 μW and 
silicon area per channel of 0.03 mm2, and provides data reduction of around 90% while enabling accurate 
reconstruction of the original signals.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Wireless monitoring of neural activity through implantable de-
vices is an important technology that enables advanced diagnosis 
and treatment of brain disorders such as Parkinson’s disease, ma-
jor depressive disorder and epilepsy [1–3]. Fig. 1 shows a typical 
wireless neural recording system. However, designing such a wire-
less neural recording device faces numerous challenges. These in-
clude integrating high-density recording electrodes [4,5], avoiding 
the heating of tissues due to energy transfer to power the implants 
(the maximum power density should be 0.8 mW/mm2 for the ex-
posed tissue area [6]), maximizing the device lifetime [7,8], and 
minimizing the device size [9]. The conflict between huge data 
size and limited energy available for implantable recording de-
vices is one of the principal challenges; specifically, integrating the 
necessary wireless transmission component in an implantable de-
vice exacerbates the problem of stringent energy constraints [10]. 
Therefore, data reduction or compression strategies should be em-
ployed to minimize the power consumption of the dedicated im-
plantable devices.
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Several neural signal reduction or compression techniques are 
already in use. Signal reduction is widely used to implement data 
reduction under certain constraints; methods include neural spike 
detection [11–13] and data feature extraction [14,15]. Both meth-
ods involve locating important information and eliminating the 
remaining parts of the signals. However, signal reduction methods 
distort or lose some necessary information. For instance, a spike-
detection-based neural recording device usually obtains data as the 
time series or the impulse, which cannot provide the details (shape 
or amplitude) of the original signal or spikes [16]; feature extrac-
tion methods are usually computationally complex, which conflicts 
with the design of a low-power device [17]. Therefore, it is neces-
sary to find a new method that does not cause significant loss of 
features when recording neural signals.

Data compression methods avoid these drawbacks by preserv-
ing maximum information during the compression phase, which 
allows recovery of the original signal. Recently introduced com-
pressed sensing (CS) technique shows great potential in compress-
ing neural signals [18]. CS has low-encoder complexity and univer-
sality for different kinds of signals. It is a revolution for the tra-
ditional Nyquist sampling frequency (Shannon theory), which has 
attracted considerable attention in the areas of computer science, 
applied mathematics and electrical engineering [19]. CS preserves 
the temporal and morphological information of the signal, which 
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Fig. 1. Simplified diagram of a typical wireless neural monitoring system.

is much better than spike detection or feature extraction methods 
[20].

1.1. Introduction of the CS technique

In this section, we briefly introduce basic concepts in CS theory. 
First, the sparsity of the signal is an important concept. A sparse 
signal can be compressed through a sensing matrix. Suppose a vec-
tor (or signal) x(x1, x2, . . . , xn) ∈ R

N and some items of x are zero 
or close to zero, so this vector can be called a sparse vector (or 
signal). If x is not sparse in the current basis, but it is sparse un-
der some bases, then it still can be regarded as a sparse signal. For 
example, suppose a basis ΨN×T , in which x = Ψ z can be sparsely 
represented, so x is sparse under basis Ψ .

If x(x1, x2, . . . , xn) ∈ R
N is sparse, then it can be compressed 

through a sensing matrix ΦN×M to y ∈ R
M . When the sparsity of 

the signal is large, x can be largely compressed, that is, M � N , 
which can be described as in (1).

y = ΦN×M x (1)

If x is sparse under basis Ψ , then (1) can change to (2).

y = ΦΨ z (2)

Second, the original signal can be reconstructed by �1 mini-
mization. Given the original sparse signals and the measurement 
y, the best way to reconstruct the signal is through �0 minimiza-
tion [19]. But finding a solution that approximates �0 minimization 
is NP (non-deterministic polynomial-time) hard; therefore, �1 min-
imization is widely used in signal reconstruction for CS application 
[19]. The form of �1 minimization is shown in (3). Based on the 
signal reconstruction via �1 minimization, many signal reconstruc-
tion algorithms exist. �1 minimization reconstruction algorithms, 
which directly use framework shown in (3), are powerful methods 
for computing sparse representations [21]; basis pursuit algorithms 
(BP) belong to this category [22]. Greedy algorithms are another 
category, which includes match pursuit algorithm (MP), orthogo-
nal matching pursuit algorithm (OMP) [23], and iterative hard or 
soft thresholding algorithm [24,25]. Greedy algorithms are compu-
tationally efficient, but they are usually sensitive to noise especially 
when the original signals are not exactly sparse. By comparison, �1
minimization reconstruction algorithms are more robust to noise 
but at the price of a higher computational cost [26]. In addition, 
other kinds of algorithms can be used to reconstruct the origi-
nal signals; for example, a Bayesian-based reconstruction method, 
called Block Sparse Bayesian Learning (BSBL) algorithm, uses the 
maximum likelihood to reconstruct the signal, and can reconstruct 
non-sparse signals [27].

x′ = argmin
z

‖z‖1 subject to z ∈ B(y) (3)

where B(y) = {z : Az = y}.

Third, the design of the sensing matrix is another important 
topic. The sensing matrix strongly influences the amount of recon-
struction error and also transmission of compressed signals [28]. 
In CS theory, the sensing matrix Φ can be a random matrix, such 
as a sub-Gaussian matrix [29], a random discrete Fourier transmis-
sion matrix [30], or a deterministic matrix, such as the Discrete 
Chirp matrix [31], the Reed Muller matrix [32], low-density parity-
check (LDPC) matrix [33]. To correctly reconstruct x, the sensing 
matrix ΦN×M should obey the Restricted Isometry Property, which 
is described as follows.

Restricted Isometry Property An M × N sensing matrix Φ is said 
to satisfy an Restricted Isometry Property (RIP) of k order, if it sat-
isfies (4),

(1 − εk)‖X‖2
2 ≤ ‖Φ X‖2

2 ≤ (1 + εk)‖X‖2
2 (4)

for all the k-sparse vectors X . The restricted isometry constant εk
of matrix Φ lies between 0 and 1. The process of CS compression 
is shown in Fig. 2. In this diagram, a sparse signal is firstly com-
pressed by a sensing matrix. Then the signal is recovered through 
the �1 norm-based reconstruction. After the reconstruction, if x is 
sparse under the basis Ψ , it still needs to recover the signal in the 
current basis.

Finally, the research in the field of compressed sensing is not 
just in the theoretical concept but also in the design of underly-
ing circuitry. There are several articles about the application of the 
CS technique [34–36]. Also, some designers used the CS technique 
to design the neural recording circuit [10,20,37]. Fig. 3 shows the 
principles of use of the CS technique in neural recording circuit 
design. Figs. 3(a) and 3(b) depict analog and digital single-channel 
designs that apply the CS technique. The designs have two com-
mon parts: a sensing matrix generator and a multiplication block. 
In Fig. 3, the sensing matrix generator could be a random or de-
terministic matrix (vector) generator, but most current designs use 
a random sensing matrix to design the circuit. The multiplication 
block does the matrix multiplication of the sensing matrix and the 
signal vector.

1.2. Contribution of this article

In a recent article, we introduced a sensing matrix construc-
tion method called a minimum Euclidean or Manhattan distance 
cluster-based deterministic (MDC) sensing matrix [38]. In this arti-
cle, we proved that neural signals were not sparse, but contained 
many identical (or similar) points. We researched these identical 
or highly similar non-zero points, i.e., the similarity of the points 
in a signal, to compress neural signals, and we proposed the MDC 
matrix. From the simulation results, we proved that neural signals 
can be largely compressed with unit MDC (UMDC) matrix and also 
can be well reconstructed by basis pursuit algorithm for sparse sig-
nals or non-sparse signals which contain lots of similar points. In 
addition, we proved that the MDC matrix obeys the RIP under two 
prerequisites, and we concluded that the MDC matrix can com-
press a signal with a relatively large compression rate (CR) and 
small reconstruction error rate (RER).

In this article, our contribution is using the MDC matrix to im-
plement single and multichannel digital systems. It can be seen 
from Fig. 3 that the process of sensing matrix generation does 
not include any information from the signals that need to be 
compressed, but the MDC matrix can use the information of the 
signal. According to [38], we design a digital signal processing sys-
tem which applies the MDC matrix; the principle of the circuit 
is shown in Fig. 3(c). The difference between our design and the 
ones in Figs. 3(a) and 3(b) is that our design uses the information 
of the signal itself to generate the sensing matrix. In later sections, 
we give details of construction of a digital circuit using the MDC 
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