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Due to the growing interest in image classifiers, the concept of native two dimensional (2-D) classifiers 
continues to attract researchers in the field of pattern recognition. In most cases, the 2-D extension 
of a regular 1-D classifier is straightforward. Following the construction methodology of the Common 
Matrix Approach (CMA), its relation to the eigen-matrices of the covariance tensor is illustrated. The 
proposed methodology presents an alternative point of view to the classical CMA implementation that 
depends on Gram–Schmidt orthogonalization. Therefore a 2-D approach which is the counterpart of CVA 
implemented with covariance matrix is developed in this paper.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The amount of 2-D data and images continuously increase in 
digital form. An immediate application of such data is detection 
and classification. The conventional approach to classification in 
images was the adaptation of well known statistical or neural 
classifiers into the 2-D data. When the classifier requires sub-
space projections or transformations, these operations were usually 
performed along the rows and the columns of the image in the 
form of consecutive 1-D processes. Although such operations han-
dle most of the classification problems, they may lack the exact 
data dependencies in two dimensions. In such cases, construction 
of a native 2-D classifier with the desired properties may become 
essential. The subspace classifier, known as the Common Vector 
Approach (CVA) [1–5], has the problem of extension difficulty to 
higher dimensions.

In the literature, the classical CVA was defined for 1-D time 
signals using two methods: 1) via Gram–Schmidt orthogonaliza-
tion, 2) via eigen-decomposition of covariance matrices. Since CVA 
construction idea originally comes from the orthogonalization of 
data, its 2-D extension was only applied through Gram–Schmidt 
orthogonalization. In that aspect, generalization of eigen-analysis 
to higher dimensions was non-trivial, so never utilized in the liter-
ature. In this work, the extension of CVA to 2-D, which is called 
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CMA, is constructed using a tensor-style eigenvalue–eigenmatrix 
framework, and its analogy to the classical orthogonalization-based 
construction of CMA is illustrated. Specifically, fourth-order co-
variance tensors are constructed in order to examine the spatial 
relationships between the image pixels effectively. These covari-
ance tensors for each class are obtained from second-order tensors 
(matrices) of that class. The algebraic equivalence of tensor based 
eigen-analysis and Gram–Schmidt orthogonalization is mathemat-
ically achieved and numerically verified over a Face Recognition 
case study that utilizes CVA (or, CMA, thereof) as a classifier with 
the above two implementations. Although the tensor-style eigen-
analysis does “not” provide a certain computational advantage over 
the orthogonalization process (with essentially an identical com-
plexity), the presented equivalence provides a mathematical in-
sight to the idea of CVA through small eigenvalues and correspond-
ing eigen(vectors/matrices). Besides, it opens the possibility to fur-
ther investigate the classification via the common vectors even for 
higher dimensional signals.

The organization of the paper is as follows: In Section 2, the 
covariance-based and subspace classifiers are first briefly men-
tioned to motivate the implementation of CVA. Extensions of PCA 
and LDA to 2-D or higher dimensions using the tensor notation 
are mentioned in this section. In Section 3, the immediate 2-D 
version of CVA (namely, the Common Matrix Approach – CMA) is 
constructed using the initial idea of producing orthonormal differ-
ence matrices and the corresponding subspaces spanned by them. 
In Section 4, the main contribution of this work is presented where 
the CMA construction is performed by the eigenmatrix determina-
tion of covariance tensors. The analogy and equivalence between 
the constructions of Section 3 and those of Section 4 are described 

http://dx.doi.org/10.1016/j.dsp.2015.03.008
1051-2004/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2015.03.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:sergin@ogu.edu.tr
mailto:ongerek@anadolu.edu.tr
mailto:bgulmez@ogu.edu.tr
mailto:atalaybarkan@anadolu.edu.tr
http://sergin.ogu.edu.tr/
http://dx.doi.org/10.1016/j.dsp.2015.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.03.008&domain=pdf


S. Ergin et al. / Digital Signal Processing 41 (2015) 110–117 111

in Section 5, where the equality of the final projection operators 
are proved for both zero eigenvalues and non-zero eigenvalues of 
the covariance tensor. A separate analysis for the zero and the 
non-zero eigenvalues is also carried out due to the inherent con-
struction and the working idea of CVA. In the same section, the 
described analogy is illustrated using a simple numerical example. 
In Section 5, both constructions of CMA method are also tested 
on a real life classification application of face recognition and the 
equivalences of both constructions are verified. The discussions and 
conclusions are given in Section 6.

2. Literature background

Image classification has been an active research field since 
decades. Several classification methods had been proposed and 
applied to specific problems such as surveillance, diagnosis, face 
recognition, etc. Most classical algorithms, such as Principal Com-
ponent Analysis (PCA) [6] and Linear Discriminant Analysis (LDA) 
[7], treat an input image as a 1-D vector rendered in raster scan 
[8,9]. However, some recent works have started to consider an 
object as a two dimensional matrix for unsupervised learning. Re-
cently, multilinear algebra, the algebra of higher-order tensors, was 
applied for analyzing the structure of image ensembles [10,11]. 
Being the natural generalization of matrices, tensors define mul-
tilinear operators over a set of vector spaces [11]. Hence, tensor 
analysis is a unifying mathematical framework suitable for a vari-
ety of visual problems. For example, a renewal of interest in the 
use of higher-order statistics (HOS) has been clearly visible espe-
cially on tensors in the last few years [12].

Being a very popular image classification problem, face recog-
nition is selected as an example application in this work. Most 
face recognition techniques focus on important portions of face 
to perform expression-independent face recognition. In particular, 
PCA and its refinement, Independent Component Analysis (ICA) has 
been extensively used in facial image recognition [7,13,14]. The 
conventional eigenfaces technique [6,9] works well when person 
identity is the only varying parameter. If other factors, such as 
illumination, posing, and expression are also permitted to vary, 
the eigenfaces technique experiences accuracy problems. ICA can 
also be made by means of simultaneous third-order tensor diag-
onalization (STOTD) approach which is mainly similar to the well 
known and efficient Joint Approximate Diagonalization of Eigen-
matrices (JADE) algorithm [15,16]. PCA-based ICA routines [15] can 
also be mentioned in the area of such modifications. Similarly, 2D-
PCA and Kernel PCA (KPCA) are all modifications or extensions of 
PCA to address higher order statistical dependencies [17,18]. The 
incremental learning of bidirectional principal component analysis 
(IBDPCA) algorithm [19] was presented by a matricization of third-
order tensor for on-line training. If all training data is not given in 
advance, and new training samples arrive at any time, the IBDPCA 
algorithm overcomes the shortcomings of BDPCA [19].

Another linear technique that has been successfully applied to 
face recognition is LDA [20]. The Fisher’s LDA (FLDA) [21] method 
further overcomes the limitations of eigenfaces method. Another 
extension to LDA was proposed by Kong et al. [22], where the 
small sample size problem in LDA was resolved by utilizing a Two 
Dimensional Fisher Discriminant Analysis (2DFDA) algorithm [22]. 
Similarly, Deng et al. [23] have proposed two novel tensor sub-
space learning algorithms called TensorPCA and TensorLDA. The 
“tensorfaces” method strongly resembles the construction method-
ology utilized in this work. This method was proposed to make 
different representations of faces and it has several advantages 
over conventional eigenfaces [24]. Recently, Sp-Tensor method [25]
was developed to extend tensorface by applying the sub-pattern 
technique. The advantages of the Sp-Tensor method over tensorface 
are not only a portion of spatial structure and local information of 

facial images is preserved but also the computational complexity 
dramatically reduces [25]. A novel efficient appearance-based face 
recognition method called Tensor Subspace Regression (TSR) has 
been suggested [26] to overcome the shortcomings of Tensor Sub-
space Analysis (TSA) since it is time consuming and needs to solve 
a series of eigen-problems. The difference between TSR and TSA is 
that the facial subspace learning problem was implemented in a 
regression framework which avoids the high computational eigen-
step [26].

Similar to matrix eigenvalue decomposition (EVD), tensor 
higher-order EVD (HOEVD) has been used for reconstructing the 
pathways in cellular systems [8]. A novel feature fusion method 
called Multiple Component Analysis (MCA) has been proposed 
by constructing a higher-order covariance tensor [27]. In MCA, 
the orthogonal subspaces corresponding to each feature set have 
been learnt through tensor Singular Value Decomposition (SVD) 
that couples dimension reduction and feature fusion together [27]. 
As another utilization of the covariance tensor concept, a special 
(index-free) tensor formalism (in which, quadri-covariance tensor 
and its eigenmatrices are natural 4th-order generalizations of 2nd-
order covariance) has been built to express 4th-order multivariate 
statistics [12]. A multimodal recognition based on feature fusion 
and “curve tensor approach” was proposed to address the small 
sample size problem in biometric recognition [28]. Generally 2nd 
or higher order tensors have been explored for the aim of encoding 
an object and the characteristics of the higher-order-tensor-based 
discriminant analysis has been investigated in [29]. The next trans-
form method is the Higher Order SVD which was successfully 
applied to human face recognition [30] and human motion analy-
sis problems [24,31–33]. Finally, Lathauwer and Castaing [34] have 
proposed new deterministic tensor-based techniques for the blind 
separation of a mixture of Direct Sequence–Code Division Multiple 
Access (DS–CDMA) signals [34].

CVA was successfully used in speech recognition [2–4], speaker 
recognition [1], image recognition [35,36] and motor fault detec-
tion [5] problems. The work presented here is considered as an 
extension of CVA to a higher dimension, producing the Common 
Matrix Approach (CMA). Due to the similarity of the implementa-
tion between CVA and PCA or LDA, the higher dimension exten-
sions have a similar flavor. Previous studies on CMA have been 
realized by finding the orthonormal difference matrices and con-
structing difference subspaces for each image class [37]. In this 
work, CMA is implemented with a completely new procedure, and 
its verification with the classical CMA construction technique is 
performed. The CMA method is believed to have a potential in im-
age processing and classification.

The regular CVA can be explained and implemented with two 
different approaches:

1. Subspace construction via orthonormal difference vectors, and
2. Eigenvector construction using covariance matrices for each 

subspace.

Until now, CMA could only be performed using orthonormal 
difference matrices (like the orthonormal difference vectors of 
CVA, corresponding to the approach numbered 1 in above). CMA 
has an advantage in terms of computational complexity because 
the covariance matrices obtained from image vectors cannot be 
easily processed. In this work, it is shown that the second ap-
proach can be extended into 2-D space and thus CMA can be 
implemented using covariance tensors, producing exactly the same 
classifier results. Showing the existence of CMA implemented with 
2-D counterpart of second approach would be incomplete without 
showing its relation to the covariance tensor approach. Using the 
application of face recognition, it was illustrated that CMA is com-
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