Web Semantics: Science, Services and Agents on the World Wide Web 35 (2015) 159-166

Web Semantics: Science, Services and Agents

journal homepage: www.elsevier.com/locate/websem

Contents lists available at ScienceDirect

urnaL or
-Semantics

SCIENCE
SERVICES &
AGenTRE T

WORLD WIDE WEB

on the World Wide Web

The Mannheim Search Join Engine

—
@ CrossMark

Oliver Lehmberg *, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paulheim,

Christian Bizer

Data and Web Science Group, University of Mannheim, B6, 26, 68159 Mannheim, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 30 January 2015
Accepted 1 May 2015
Available online 30 May 2015

Keywords:
Table extension
Data search
Search Joins
Web tables
Microdata
Linked data

A Search Join is a join operation which extends a user-provided table with additional attributes based
on a large corpus of heterogeneous data originating from the Web or corporate intranets. Search Joins
are useful within a wide range of application scenarios: Imagine you are an analyst having a local table
describing companies and you want to extend this table with attributes containing the headquarters,
turnover, and revenue of each company. Or imagine you are a film enthusiast and want to extend a table
describing films with attributes like director, genre, and release date of each film. This article presents the
Mannheim Search Join Engine which automatically performs such table extension operations based on a
large corpus of Web data. Given a local table, the Mannheim Search Join Engine searches the corpus for
additional data describing the entities contained in the input table. The discovered data are joined with the
local table and are consolidated using schema matching and data fusion techniques. As a result, the user
is presented with an extended table and given the opportunity to examine the provenance of the added
data. We evaluate the Mannheim Search Join Engine using heterogeneous data originating from over one
million different websites. The data corpus consists of HTML tables, as well as Linked Data and Microdata
annotations which are converted into tabular form. Our experiments show that the Mannheim Search
Join Engine achieves a coverage close to 100% and a precision of around 90% for the tasks of extending
tables describing cities, companies, countries, drugs, books, films, and songs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

cumbersome and the manager will likely miss a large fraction of
all relevant data sources that are available on the Web.

Imagine you are a marketing manager who wants to group the
customers of a company according to different properties of the
countries in which the customers are located in order to select
customers that should be targeted by a marketing campaign. While
the data about customers can be found in the company’s internal
data sources, further background information about the countries
may not be stored there. Relevant data about countries could for
instance include population, area, GDP, or human development
index. Today, the manager needs to manually search and integrate
data about each country using search engines such as Google,
access the small set of online databases he knows about, or copy-
and-paste values from Wikipedia. Manually searching for data is

* Corresponding author.

E-mail addresses: oli@informatik.uni-mannheim.de (O. Lehmberg),
dominique@informatik.uni-mannheim.de (D. Ritze),
petar.ristoski@informatik.uni-mannheim.de (P. Ristoski),
robert@informatik.uni-mannheim.de (R. Meusel),
heiko@informatik.uni-mannheim.de (H. Paulheim),
chris@informatik.uni-mannheim.de (C. Bizer).

http://dx.doi.org/10.1016/j.websem.2015.05.001
1570-8268/© 2015 Elsevier B.V. All rights reserved.

This article presents the Mannheim Search Join Engine (MS] En-
gine) which supports the manager in reaching his goal by automat-
ing the data search and integration tasks. Given a local table, the
MS]J Engine searches a heterogeneous data corpus for additional
data describing the entities contained in the input table. The search
operation does not assume any external knowledge about corre-
spondences on schema or instance level. The discovered data are
joined with the local table and their content is consolidated using
schema matching and data fusion methods. As a result, the user is
presented with an extended table and given the opportunity to ex-
amine the provenance of the added data. We evaluate the engine
using a data corpus consisting of 36 million tables originating from
over one million different websites. The data corpus contains HTML
tables as well as Linked Data [1] and Microdata annotations [2]
which are converted into tabular form. In contrast to the existing
research on table extension by Google [3] and Microsoft [4], our
data corpus as well as the source code of the MS]J Engine are pub-
licly available.

The article is structured as follows: Section 2 gives an overview
of the architecture of the MS] Engine and describes the methods

http://dx.doi.org/10.1016/j.websem.2015.05.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2015.05.001&domain=pdf
mailto:oli@informatik.uni-mannheim.de
mailto:dominique@informatik.uni-mannheim.de
mailto:petar.ristoski@informatik.uni-mannheim.de
mailto:robert@informatik.uni-mannheim.de
mailto:heiko@informatik.uni-mannheim.de
mailto:chris@informatik.uni-mannheim.de
http://dx.doi.org/10.1016/j.websem.2015.05.001

160

0. Lehmberg et al. | Web Semantics: Science, Services and Agents on the World Wide Web 35 (2015) 159-166

‘4@-»

1. Table
Indexing

Data Collection

Table Collection

Table Preprocessing

Table Storage Table Index

2. Table
Search

&\

User Preferences

= o -»‘-I

Search

Table Preprocessing

2
Result Table

Schema Matching &

Multi-Join Top-K Tables

Data Fusion

Fig. 1. Functionality of the MS] Engine.

that are employed for data normalization, data search, and data
consolidation. Section 3 describes the data corpus that was used to
evaluate the engine and presents the results of our table extension
experiments. Section 4 compares the MS] Engine with related
work, while Section 5 outlines directions for future work.

2. Architecture

A Search Join is a join operation which extends a local, user-
provided table (called query table) with additional attributes
based on a large corpus of heterogeneous tabular data [5]. Search
Joins can be described as a concatenation of three operations: a
search operation s, a multi-join operation m, and a consolidation
operation c:

R= C(m(Tq, STq,a(Tc))) (1)

where R is the result table, Ty is the query table, T, is a corpus of
heterogeneous tables, and a is an optional, user-specified parame-
ter that allows the search to be constrained to a specific attribute
(constrained query), e.g. only search for information about the pop-
ulation of countries. If the parameter a is not specified, all discov-
ered attributes will be added to the result table (unconstrained
query).

Fig. 1 gives an overview of the functionality of the MS]J Engine.
The functionality can be divided into three areas: Table indexing,
table search, and data consolidation. In the following, we will
describe each area in detail.

2.1. Table indexing

The MS] Engine uses simple entity-attribute tables as inter-
nal data model. Each table describes a set of entities using a set of
single-valued attributes. Each attribute has a header which we as-
sume to be some surface form of the attribute’s semantic intention.
We distinguish the following attribute data types: nominal values,
numbers with or without unit of measurement, timestamps, and
geo-coordinates. As many Web and intranet data sources provide
natural language labels for the entities that they describe, we re-
quire each table to contain a subject attribute containing the entity
name, e.g. Lady Gaga, U.S.A. or United States. This approach to rely
on entity names as pseudo-keys is also used by the related work
from Google [3,6] and Microsoft [4].

Before a table from the data corpus T. is indexed, the value
of each cell is normalized, i.e., tokenized, lower cased, values in
brackets and stop words are removed.

In order to be indexed, a table needs to fulfill two conditions:
(1) it must contain at least three attributes and describe at least
five entities, (2) it must contain a subject attribute. Applying these
filtering conditions ensures a minimal quality of the remaining
tables.

We apply the following heuristic in order to identify the subject
attribute of a table: If a table contains an rdfs:label attribute or some
other attribute having a header containing the string name, this
attribute will be chosen as subject attribute. Otherwise, the string
attribute with the highest number of unique values is chosen as
subject attribute. In cases where two or more attributes contain
equally high numbers of unique values, the left-most attribute is
chosen. Furthermore, we only consider attributes with at least 60%
unique values.

To identify attribute headers, we use the following heuristic:
We assume that the attribute headers are in the first non-empty
row of the Web table that contains at least 80% non-empty cells.
We present an evaluation of both pre-processing heuristics in
Section 3.2.

The data type of each table attribute is identified based on its
values. First, the data type of each value of the attribute is detected
by using about 100 manually defined regular expressions which
are able to detect the data types number (with or without unit
of measurement), timestamp and geo-coordinates. Additionally,
the algorithm uses around 200 manually generated rules for
converting units of measurements to the corresponding base unit
(metric system), e.g. 8 sq. mi. will be converted to 20.72 million
square meter. After the data type of each value is detected, the final
attribute data type is decided using majority voting.

As a final step of the indexing procedure, the normalized subject
attribute values and attribute headers of each table are stored in a
Lucene index,' which is used later by the search operation.

2.2. Table search

The query table T, is preprocessed in the same manner as
the tables of the data corpus T.. Then, the search operator s is
applied and tries to find matching subject values in the previously
indexed tables T.. For deciding whether a subject value from a
table matches a subject value from the query table, two different
methods are available: exact subject value matching, and similar
subject value matching.

1 http://lucene.apache.org/.

http://lucene.apache.org/

Download English Version:

https://daneshyari.com/en/article/558410

Download Persian Version:

https://daneshyari.com/article/558410

Daneshyari.com

https://daneshyari.com/en/article/558410
https://daneshyari.com/article/558410
https://daneshyari.com

