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Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait
dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new poten-
tial to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested as-
sociation mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises
questions about the optimal design and allocation of resources in their creation. In this paper we review strate-
gies for the creation ofmulti-parent populations and describe two complementary in silico studies addressing the
design and construction of NAM andMAGIC populations. The first simulates the selection of diverse founder par-
ents and the second the influence ofmulti-parent crossing schemes (and number of founders) on haplotype cre-
ation and diversity. We present and apply two open software resources to simulate alternate strategies for the
development of multi-parent populations.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Expanded genetic diversity is required to address the perpetual chal-
lenges of quantitative trait dissection. In crops,mappingpopulationsde-
veloped from two contrasting parents have been popular for creating

novel recombinants and haplotypes for key crop traits (e.g. the UK
wheat reference population Avalon × Cadenza; see www.wgin.org.uk;
Ma et al., 2015). Bi-parentalmapping populations are simple to develop
and possess high power for QTL detection (Semagn et al., 2006; Xu et al.,
2016). However, combining the genomes of only two parents results in
a relatively narrowgenetic base and inadequately representswider alle-
lic diversity (Jannink, 2007). Despite this, linkage based quantitative
trait locus (QTL) mapping using bi-parental populations is the most
widely used method of identifying regions of genome controlling phe-
notypic variation (Bernardo, 2008).
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Genome-wide association (GWA) or linkage disequilibriummap-
ping is a complementary method exploiting linkage disequilibrium
(LD) as a function of historical recombination for QTL mapping.
GWA studies however are prone to detection of false positive QTLs
due to unknown population structure and genetic relatedness
among the lines (Lewis, 2002; Zhao et al., 2007) and statistical
approaches may also over-compensate for population structure
(Segura et al., 2012), thereby lowering the accuracy of QTL detection.
In addition, low frequency rare variant QTLs may be undetected
despite having large effects (Breseghello and Sorrells, 2006;
Mackay and Powell, 2007).

Multi-parent populations (MPPs) have emerged as next-generation
mapping resources combining diverse genetic founder contributions
with high levels of recombination (Mackay and Powell, 2007;
Cavanagh et al., 2008), overcoming some of the limitations of bi-paren-
tal and GWA populations (Huang et al., 2011). The twomost commonly
developed forms of MPPs in crop genetics are nested association map-
ping (NAM) and multi-founder advanced generation inter-cross
(MAGIC) populations. Derivation from greater than two parents and
structured inter-mating maximizes allelic diversity and facilitates the
inclusion of novel recombinants. Creating controlled populations from
crosses betweenmultiple well-characterized parents allows the deriva-
tion of individuals which feature diverse levels and patterns of recombi-
nation and new genotype and haplotype combinations. These features
are exploited for trait mapping with the contribution of multiple foun-
ders increasing the potential genetic diversity in advanced lines (Yu et
al., 2008).

NAM populations were designed to increase the power and pre-
cision of QTL mapping by combining the advantages of association
mapping and bi-parental populations. NAM populations can effec-
tively capture rare alleles allowing new loci to be seen (McMullen
et al., 2009). Populations are derived by crossing a single inbred
parent to a successive collection of diverse inbred lines. The first
NAM population was created in maize, derived from crosses be-
tween the maize reference line B73 and 25 diverse inbred lines to
produce 5000 recombinant inbred lines (RILs) (Yu et al., 2008).
These capture thousands of recombination events but recombina-
tion and segregation distortion varies among different families
which can limit the precision of genetic dissection of quantitative
traits (McMullen et al., 2009). The maize NAM has been used to
study the genetic architecture of a number of morphological and
disease resistance traits (Buckler et al., 2009; Tian et al., 2011;
Cook et al., 2012; Bajgain et al., 2016). A NAM derived advanced
backcross population has been recently developed for barley
which combines wild barley landraces into the exotic background
Rasmusson (Nice et al., 2016).

MAGIC populations are developed by inter-crossing multiple (typi-
cally four, eight or sixteen) parental lines in a balanced funnel crossing
scheme. The resulting RILs are highly recombined mosaics of the foun-
der genomes. Multi-cross populations were first proposed for mouse
known as heterogeneous stock and collaborative cross populations
(Mott et al., 2000; Valdar et al., 2006b; Threadgill and Churchill, 2012)
and for plants by Mackay and Powell (2007). They are also similar to
theArabidopsismulti-parent recombinant inbred line (AMPRIL) popula-
tion described by Huang et al. (2011) whichwas developed from diallel
crossing of eight Arabidopsis accessions from diverse geographical ori-
gins. In MAGIC, high levels of recombination result in low LD and give
highmapping resolution. A high densityMAGIC linkagemap has recent-
ly been developed in wheat (Gardner et al., 2016). MAGIC populations
have being developed in many plant species including Arabidopsis
(Kover et al., 2009), tomato (Pascual et al., 2015), barley (Sannemann
et al., 2015), maize (Dell'Acqua et al., 2015), sorghum (Higgins et al.,
2014), wheat (Huang et al., 2012; Mackay et al., 2014) and rice
(Bandillo et al., 2013).

Trait mapping in structured MPPs involves the use of statistical
models developed based on their theoretical properties. Many

models for genetic data analysis have been generated by computer
simulation to determine the properties and outcomes of an experi-
mental design. For example, simulation studies in MPPs can be ap-
plied to determine the optimal number of founder lines, crosses
and the size of the population needed to effectively track the genetic
architecture of quantitative traits (Myles et al., 2009). Kover et al.
(2009) simulated the effects of MPP size on mapping resolution
and power for QTL detection determining that QTL detection error
rates decreased when population size increased and QTL could be
mapped to smaller intervals. Simulation studies typically generate
in silico data describing population specific genetic polymorphism
which are then used to describe, solve or predict. Because in silico
data sets are not subject to the same inconsistencies as real datasets,
they predict outcomes for specified scenarios (Yu et al., 2006, 2008;
Hoban et al., 2011). Verbyla et al. (2014) simulated the effect of a
joint analyses of multiple environmental and multiple trait datasets
on QTL detection accuracy and to infer QTL-by-environment interac-
tions in MAGIC.

MPPs are increasingly used in crop genetics and schemes for their
creation vary in design. In this paper we present simulations using
two open source software applications that analyse the selection of
founders and the properties of both NAM and MAGIC population
types. We compare schemes in which the number of crosses and the
number of parents vary. The function of MPPs can be viewed as the cre-
ation of haplotype diversity for fine mapping and selection and the dif-
ferent schemes were therefore quantified as the number of haplotypes
created for a range of MPP configurations.

2. Materials and methods

2.1. Selecting founders

Two methods of selecting subsets of individuals from popula-
tions to maximize genetic diversity have previously been imple-
mented using PowerMarker analysis software (Liu and Muse,
2005) and can be used to select founding individuals for MPPs.
These methods are (i) selection using total number of segregating
alleles and (ii) selection using average gene diversity (Nei, 1973).
The PowerMarker analysis software used a simulated annealing al-
gorithm that allowed for efficient selection of individuals from
within a large set of germplasm for which performing an exhaustive
search would be infeasible. However, PowerMarker is no longer
actively supported and a functional version of the software is no
longer publicly available. To fill this void, we implemented a com-
plementary method using genetic algorithms. These genetic algo-
rithms were developed using the R package ‘GA’ (Scrucca, 2013)
which provides a flexible, general-purpose package for this pur-
pose. This flexibility was used to define custom objective functions
and genetic operators for implementing each method. The scripts
used to implement these methods are available (http://www.niab.
com/pages/id/326/Resources) and are also available as Supplemen-
tary information.

The performance of these methods was examined using the 376
wheat varieties in the TriticeaeGenome association mapping panel
(Bentley et al., 2014; dataset available as above). Each line was
genotyped with 2535 polymorphic DArT markers (Jaccoud et al.,
2001). Each method was used to select two, four, eight, sixteen
and twenty six line subsets that could be used to generate MPPs.
Average performance of each method was measured across ten
replicates and compared to selection of random individuals on
the basis of percentage of polymorphic loci and average gene diver-
sity. Selection of the two line subset was compared against the best
possible subset for percentage of polymorphic loci and average
gene diversity using an exhaustive search of all possible
combinations.
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