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This work aims to present a new method to perform blind extraction of chaotic deterministic sources
mixed with stochastic signals. This technique employs the recurrence quantification analysis (RQA),
a tool commonly used to study dynamical systems, to obtain the separating system that recovers
the deterministic source. The method is applied to invertible and underdetermined mixture models
considering different stochastic sources and different RQA measures. A brief discussion about the
influence of recurrence plot parameters on the robustness of the proposal is also provided and illustrated
by a set of representative simulations.
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1. Introduction

Dynamical systems can be described in terms of a state map-
ping commonly defined by a set of differential equations. When
this mapping is composed of nonlinear functions, a very rich dy-
namical scenario can occur, which includes convergence to fixed
points, existence of limit-cycles, quasi-periodicity and chaos. In-
deed, chaotic oscillations are present in many physical systems
(e.g. biological, mechanical and electronic), which is justified by
the relevance to the study of natural phenomena of nonlinear pro-
cesses like cooperation, competition, saturation and hysteresis, just
to cite a few. Chaotic behavior is associated with features as ape-
riodicity, broadband spectrum and sensitivity to initial conditions,
aspects that can be easily confused with characteristics of random
processes [1,2].

In fact, distinguishing chaotic from random signals is a far from
trivial task, especially when experimental time series immersed in
noise are considered [2–5]. The most common approach is to eval-
uate the Kolmogorov–Sinai (KS) entropy by calculating its lower
bound given by the correlation entropy (K2) [6]. In general, this
quantity is zero for periodic signals, finite and positive for chaotic
processes and tends to infinite for random signals [2,7], although
some stochastic processes characterized by a power law spectrum
can be cited as exceptions, providing a finite and positive value
for the K2 entropy [2]. Moreover, invariant measures that char-
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acterize chaotic dynamical systems (as the K2 entropy, Lyapunov
exponents, correlation dimensions, among others) are strongly af-
fected by noise in practice, which makes their calculation from
experimental time series unstable or unreliable [1]. In this case, it
is certainly of great use to employ a preprocessing stage in order
to enhance, for instance, the deterministic features of the signal.
Unfortunately, the filtering process based on the classical Fourier
approach can cause the loss of relevant information [1,8–10], since
both signals (chaotic and random) have a broadband spectrum. In
this context, the challenging problem of denoising chaotic time se-
ries has been addressed in several works [11–15]. Generally, these
methods constrain the reconstructed state vector to fall onto geo-
metrical objects that are locally linear (or higher-order polynomial
maps) [1,10], assuming that the deterministic component lies on
a smooth submanifold (see [9,10] for interesting reviews), which
makes possible to achieve the trajectory generated by the dynam-
ics, reducing noise by an iterative process.

From a theoretical standpoint, if more information is available
(which, in this work, means that more than one mixture of the
chaotic and noise sources can be available), denoising chaotic time
series can be treated within the framework of the blind source ex-
traction (BSE) problem, as it is concerned with recovering a specific
set of signals of interest – usually the deterministic signals – from
versions in which they are mixed with stochastic sources. A natu-
ral possibility to solve this problem would be to employ a classical
blind separation approach such as the well-established indepen-
dent component analysis (ICA) [16,17], although it would not be
capable of exploring the peculiar features of the problem, partic-
ularly the fact that some signals are generated by a deterministic
dynamical system. As a matter of fact, this is an instance in which
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Fig. 1. Panels (a), (b), (c), (d), show, respectively, the recurrence plots (N = 1000 samples, de = 3, τ = 3, ε = 0.5) from a periodic oscillation (sin(10t)), a chaotic Lorenz time
series, a gaussian random source (zero mean and unitary variance) and a mixture of random and chaotic sources.

a priori information about the sources is available, which is always
something that widens the applicability of blind signal process-
ing (research areas such as sparse component analysis attest this
fact [18]).

In this work, a method for solving the BSE problem when
chaotic and stochastic processes are mixed is presented. The tech-
nique explores the dynamic features underlying the generation of
the chaotic sources to recover a signal that is “as deterministic as
possible”. The solution employs a recurrence plot, a classical tool
for nonlinear analysis of dynamical systems [19,20], to build score
functions based on classical estimators given by recurrence quan-
tification analysis (RQA) [21]. These score functions are used to
adapt linear separating systems under different signal and mixture
models (invertible and underdetermined), and a comparison with
a classical ICA methodology is established.

This work is organized as it follows: in Section 2, a brief intro-
duction to chaotic signals and RQA is given. Section 3 presents the
BSE problem and its relation to the proposed approach to extract
deterministic sources. Section 4 is dedicated to showing the results
obtained for a perfect invertible scenario (in which a full rank mix-
ing matrix is considered), to analyzing the role of recurrence plot
parameters in the extraction procedure, and finally, to presenting
the performance of the method in the underdetermined case (in
which there are more sources than mixtures). Section 5 presents
a discussion about the contributions and perspectives of applica-
tion of the proposed method in view of what has already been
exposed in the literature. The idea of extraction of chaotic sources
using RQA was introduced by the present authors in a previous
work ([22]) and tested for a limited set of simulations. The present
work extends the proposal by taking in account different stochastic
sources and mixing models considering three classical RQA mea-

sures, and also by analyzing the role of recurrence plot parameters
on the extraction procedure.

2. Chaotic signals and generation of recurrence plots

In formal terms, a chaotic signal is defined as a continuous-
valued signal with finite and positive entropy rate and infinite
redundancy rate [7]. For our purposes, a chaotic signal should be
simply understood as one generated by a chaotic system, which
means that its properties are defined by the dynamics that gener-
ates it and the behavior of its trajectories in the phase space. In
order to reconstruct the underlying attractor (the solution of the
dynamical equations in the phase space) from a single observed
signal (that is, from a single state variable) one can apply the Tak-
ens’ embedding theorem [1], defining a state vector x(k) such that:

x(k) = [
x(k) x(k − τ ) . . . x

(
k − (de − 1)τ

) ]
(1)

where de represents the embedding dimension – defined as the
number of coordinates that unfolds the attractor – and τ repre-
sents the delay between samples. Even though this trajectory may
not be exactly the same as that generated by the system, it will be
topologically equivalent thereto [1].

After the reconstruction, it is possible to characterize the at-
tractor with the aid of its revisited states, which can be done with
a recurrence plot, a useful graphical tool for nonlinear analysis of
dynamical systems first proposed in [19]. Using the reconstructed
state x(k), the recurrence map will be represented by an N × N
matrix, where the element (i, j) will be a black dot whenever x(i)
is sufficiently close to x( j), i.e., whenever ‖x(i) − x( j)‖ < ε.

The characterization and applicability of recurrence plots be-
comes clear by comparing maps obtained from signals of different
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