

## **ScienceDirect**



## Role of N<sup>6</sup>-methyladenosine modification in cancer Xiaolan Deng<sup>1,2,3</sup>, Rui Su<sup>2,3</sup>, Xuesong Feng<sup>1</sup>, Minjie Wei<sup>1</sup> and Jianjun Chen<sup>2,3</sup>



As the most abundant internal modification in eukaryotic messenger RNAs identified,  $N^6$ -methyladenosine ( $m^6A$ ) has been shown recently to play essential roles in various normal bioprocesses. Evidence is emerging that  $m^6A$  modification and its regulatory proteins also play critical roles in various cancers including leukemia, brain tumor, breast cancer and lung cancer, etc. For instance, FTO, the first  $m^6A$  demethylase identified, has been reported recently to play an oncogenic role in leukemia and glioblastoma. ALKBH5 (another  $m^6A$  demethylase) has been reported to exert a tumor-promoting function in glioblastoma and breast cancer. METTL3 (a major  $m^6A$  methyltransferase) likely plays distinct roles between glioblastoma and lung cancer. Here we discuss the recent progress and future prospects in study of  $m^6A$  machinery in cancer.

#### **Addresses**

- <sup>1</sup> School of Pharmacy, China Medical University, Shenyang 110122, China
- <sup>2</sup> Department of Systems Biology & the Gehr Family Center for Leukemia Research, the Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- <sup>3</sup> Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA

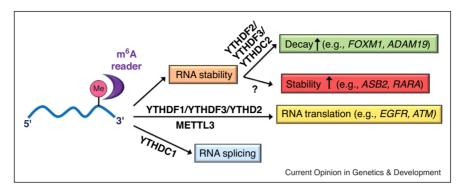
Corresponding authors: Deng, Xiaolan (xiaolan.deng@hotmail.com), Chen, Jianjun (jianchen@coh.org)

### Current Opinion in Genetics & Development 2018, 48:1-7

This review comes from a themed issue on Cancer genomics
Edited by Fatima Gebauer-Hernandez and Omar Abdel-Wahib

#### http://dx.doi.org/10.1016/j.gde.2017.10.005

0959-437X/© 2017 Elsevier Ltd. All rights reserved


### Introduction

 $N^6$ -methyladenosine (m<sup>6</sup>A) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs) that mainly occur at consensus motif of RRm<sup>6</sup>ACH ([G/A/U][G > A]m<sup>6</sup>AC[U > A > C] [1,2]. Although m<sup>6</sup>A was first discovered in 1970s [3,4], functional characteristics and regulatory mechanisms of m<sup>6</sup>A modification were largely unknown until recent years [1,2]. The identification of the fat mass and obesity-associated protein (FTO) as a *bona fide* demethylase of m<sup>6</sup>A modification [5] and the

development of transcriptome-wide approaches for m<sup>6</sup>A sequencing [6,7] have indicated that m<sup>6</sup>A is a reversible and dynamic RNA modification that may affect thousands of mRNAs and non-coding RNAs in a given type of cells. The deposition of m<sup>6</sup>A is catalyzed by the m<sup>6</sup>A methyltransferase complex (MTC) composed of methyltransferase-like 3 and 14 (METTL3 and METTL14) (i.e., writers) and their cofactor, Wilms tumor 1-associated protein (WTAP) [8–11]. The removal of m<sup>6</sup>A is facilitated by FTO and ALKBH5, two m<sup>6</sup>A demethylase (i.e., erasers) that may target distinct sets of target mRNAs [2,5,12]. YTHDF1, YTHDF2, YTHDF3, and YTHDC1, members of the YT521-B homology (YTH) domain family of proteins, have been identified as m<sup>6</sup>A direct readers that affect the translation, stability, and/or splicing of target mRNAs [13–17] (see Figure 1). Recent studies have shown that m<sup>6</sup>A modification in mRNAs or non-coding RNAs plays essential roles in virtually all types of normal bioprocesses including tissue development, self-renewal and differentiation of stem cells, heat shock response, circadian clock control, DNA damage response, and maternal-to-zygotic transition, likely through affecting RNA fate/metabolism and functions such as mRNA stability, splicing, transport, localization, translation, primary microRNA processing, and RNA-protein interactions [6,7,10,12–14,18–26]. While still in the beginning stage, efforts have also been made to investigate the biological impacts of m<sup>6</sup>A modification in cancer. In this review, we summarize the recent advance in our understanding of the biological functions and underlying molecule mechanisms of m<sup>6</sup>A regulatory proteins (i.e., writers, erasers and readers) in various types of cancers, and also discuss future prospects.

# FTO plays an oncogenic role in leukemia as an m<sup>6</sup>A demethylase

FTO was first reported to be associated with increased body mass and obesity in humans [27–30]. In line with a link between the single nucleotide polymorphism (SNP) risk genotype and increased FTO expression in human blood cells and fibroblasts [31,32], transgenic mouse model studies have demonstrated a critical role of FTO in regulating fat mass, adipogenesis and body weight [33,34,35°], though IRX3 has also been suggested to be associated with obesity-associated variants within FTO [36]. The identification of FTO as the first m<sup>6</sup>A demethylase suggests that FTO involves in m<sup>6</sup>A-based post-transcriptional regulation of RNA targets. Through analysis of genome-wide gene expression profiles of several large-cohorts of human primary acute myeloid



The fates of m<sup>6</sup>A-modified mRNA transcripts are influenced by different m<sup>6</sup>A readers. See Refs. [13–17] for more details. The examples of m<sup>6</sup>A-modification affected target mRNAs shown herein are those that have been reported to be dysregulated in cancer (see Figure 2 and Table 1 for more information). While many m<sup>6</sup>A-modified mRNA transcripts (e.g., *FOXM1* and *ADAM19*) can be recognized by readers such as YTHDF2, YTHDF3 and/or YTHDC2 that promote mRNA decay, other m<sup>6</sup>A-modified mRNA transcripts (e.g., *ASB2* and *RARA*) can be recognized by some currently unknown m<sup>6</sup>A readers that promote mRNA stability. Different m<sup>6</sup>A readers can also promote translation or affect splicing of m<sup>6</sup>A-modified target mRNAs. Besides serving as an m<sup>6</sup>A methyltransferase in nucleus, METTL3 may also serve as an m<sup>6</sup>A reader in cytoplasm in some scenarios (e.g., Ref. [51\*\*]).

leukemia (AML) patients, Li *et al.* found that *FTO* is highly expressed in certain subtypes of AMLs including AMLs carrying t(11q23)/MLL-rearrangements, t(15;17)/PML-RARA, NPM1 mutation (i.e., cytoplasmic localization of NPM1 (NPM1c+)), and/or Fms-like tyrosine kinase 3 with internal tandem duplication (FLT3-ITD) [37\*\*]. More importantly, they provided compelling evidence, based on both *in vitro* leukemia cell line models and *in vivo* mouse leukemia models, showing that FTO plays an essential oncogenic role in promoting leukemic cell transformation and AML cell survival/growth and enhancing leukemogenesis, as well as in inhibiting all-trans-retionic acid (ATRA)-induced differentiation of AML cells [37\*\*] (see Figure 2, upper left; Table 1).

Mechanistically, FTO functions as an m<sup>6</sup>A demethylase that post-transcriptionally regulates expression of its critical target RNAs (such as ASB2 and RARA) in an m<sup>6</sup>Adependent manner. ASB2 and RARA have been implicated in leukemia cell growth and drug response, especially in ATRA-induced AML cell differentiation [38-40]. FTO negatively regulates expression of ASB2 and RARA through reducing the m<sup>6</sup>A abundance of the target RNA transcripts (especially in the 3' untranslated regions (3'-UTRs)) and thereby decreasing the stability of the RNA transcripts [37<sup>••</sup>] (see Figure 2, upper left). Notably, in this study, the luciferase-reporter and mutagenesis assays have been introduced into the field of m<sup>6</sup>A-related research, for the first time, to demonstrate that the putative m<sup>6</sup>A consensus motif sites on the target RNA transcripts are important for the m<sup>6</sup>A-based epigenetic regulation of the target mRNA transcripts [37. A recent study suggests that FTO also exhibits demethylation activity towards RNA with  $N^6$ ,2'-O-dimethyladenosine (m<sup>6</sup>A<sub>m</sub>) in the 5' cap, as a subform of m<sup>6</sup>A, leading to

enhanced mRNA stability [41]. Nonetheless, roughly <sup>1</sup>/<sub>4</sub> of FTO target mRNAs may contain an A as the first encoded nucleotide adjacent to the 7-methylguanosine (m<sup>7</sup>G) cap and there is a pretty low chance that this A is methylated at both  $N^6$  and 2'-O sites; in contrast, on average there are 3-5 internal m<sup>6</sup>A sites per mRNA transcript [42]. Thus, the overall abundance of internal m<sup>6</sup>A modifications should be much higher than that of the 5' cap m<sup>6</sup>A<sub>m</sub> modification in cells. Indeed, analysis of the m<sup>6</sup>A-seq data reported in [37<sup>••</sup>] showed that over 95% of the m<sup>6</sup>A peaks with increased abundance upon FTO knockdown in AML cells are located in the internal regions (>150 nucleotides away from the 5' ends) and thus are impossible 5' cap m<sup>6</sup>A<sub>m</sub>. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/ MS)-based quantification of m<sup>6</sup>A and m<sup>6</sup>A<sub>m</sub> in human AML cells showed that the internal m<sup>6</sup>A abundance is approximately 20-30 times of the near 5' cap m<sup>6</sup>A<sub>m</sub> abundance, and the internal m<sup>6</sup>A peaks are the main substrates of FTO and represent the major changes in the  $N^6$ -methyladenosine abundance when FTO is forced expressed or knocked down in AML cells (Su R, et al., unpublished). Moreover, as demonstrated by the luciferase reporter and mutagenesis assays, the internal m<sup>6</sup>A sites on ASB2 and RARA transcripts are required for FTOmediated post-transcriptional regulation of their stability and expression [37\*\*]. Therefore, internal m<sup>6</sup>A sites, rather than the rare m<sup>6</sup>A<sub>m</sub> in the 5' cap, are responsible for FTO-mediated post-transcription regulation of target mRNAs in cancer cells.

# Dysregulation of other m<sup>6</sup>A regulatory proteins in leukemia

WTAP, which was first identified as a partner of Wilms' tumor gene 1 (WT1), has been reported recently to play

### Download English Version:

# https://daneshyari.com/en/article/5585654

Download Persian Version:

https://daneshyari.com/article/5585654

<u>Daneshyari.com</u>