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Gene regulatory networks determine cellular identity. In cancer,

aberrations of gene networks are caused by driver mutations

that often affect transcription factors and chromatin modifiers.

Nevertheless, gene transcription in cancer follows the same

cis-regulatory rules as normal cells, and cancer cells have

served as convenient model systems to study transcriptional

regulation. Tumours often show regulatory heterogeneity, with

subpopulations of cells in different transcriptional states, which

has important therapeutic implications. Here, we review recent

experimental and computational techniques to reverse

engineer cancer gene networks using transcriptome and

epigenome data. New algorithms, data integration strategies,

and increasing amounts of single cell genomics data provide

exciting opportunities to model dynamic regulatory states at

unprecedented resolution.
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Cancer transcriptional states emerge from
gene regulatory network perturbations
Genomic re-sequencing of tumour samples revealed that

different patients often share one or two strong driver

mutations (e.g. KRAS gain of function plus TP53 loss of

function mutations are typical for pancreatic cancer [1]),

together with a unique combination of less frequent

driver mutations [2]. Transcriptome and epigenome pro-

filing on the other hand, often result in defined clusters of

reproducible regulatory subtypes. Thus, chaos in the

cancer genome is often canalized into regulatory order;

and cancer cells seem to follow the same rules for tran-

scriptional regulation as normal cells, albeit with aberrant/

ectopic combinations of transcription factors, co-factors,

and genomic enhancers (Figure 1; [3]). In melanoma for

example, three clusters of transcriptional states have been

observed repeatedly (proliferative/pigmentation; inva-

sive/MITF-low; and immune), but these do not show

any obvious correlation to the three driver mutation

groups (BRAF gain, NRAS gain, or NF1 loss) [4,5]. Also

in many other cancers, transcriptomes are observed with a

seemingly limited influence of the underlying genomic

mutations, such as glioblastoma and colorectal cancer

[6,7]. There exist a few exceptions though, where a driver

mutation dominantly causes a specific transcriptomic

state. For example, leukemic cells with a chromosomal

translocation involving KMT2A (also known as MLL

fusions), consistently yield a transcriptional state distinct

from all other acute lymphoblastic leukaemia subtypes

[8,9]. Likewise, sarcoma cells with the EWSR1 fusion

oncogene have a specific transcriptome, unique amongst

all subtypes of Ewing sarcoma [10]. Nonetheless, the vast

majority of transcriptional states, and emerging pheno-

typic behaviour, seems to be a combination of both the

initial genomic aberrations, likely as a consequence of

mutations directly affecting the regulatory program (i.e.
mutated transcription factors, co-factors, signalling mole-

cules, and cis-regulatory regions; reviewed in Ref. [11]),

and the influence of the tumour microenvironment.

The observation that multiple varying genetic alterations

can lead to similar phenotypes is related to the concept of

‘cancer attractor states’, which represent stable lower-

energy valleys within a Waddingtonian landscape of all

potential GRN configurations [12–14]. Some of these

attractors are shared across cancer types, such as the

mesenchymal transition attractor, the mitotic chromo-

somal instability attractor, and the lymphocyte-specific

attractor [15]. Not unexpectedly, regulatory subnetworks

controlling cell proliferation and cell cycle, DNA damage

response, and immune response are consistently found in

pan-cancer transcriptome analyses [16–18].

Importantly, cancer cells are not necessarily fixated in a

‘stable’ state, but they may switch dynamically between

alternate states, under the influence of the microenviron-

ment such as hypoxia [19], or induced by drugs [20,21].

One of the best known state transitions in cancer is the

epithelial-to-mesenchymal transition, causing cancer

cells from epithelial origin to transition into a migratory,

drug-resistant state [22]; and a comparable ‘phenotype

switching’ that occurs in non-epithelial tumours such as

melanoma and glioblastoma [23]. Such state transitions

underlie tumour regulatory heterogeneity and under-

standing these regulatory programs can be highly impor-

tant to invent effective therapeutic strategies [13,24].
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Indeed, interfering with cancer gene networks using

‘network drugs’ could be an interesting avenue, for exam-

ple by ‘pushing’ cells towards a transcriptional state that is

vulnerable to a particular drug [25].

Here, we will review high-throughput and computational

approaches to study cancer regulatory genomics; some

studies are inspired by clinically relevant features, such as

escape from apoptosis, DNA damage, drug resistance,

invasive behaviour, or immune escape; while many other

interesting studies use cancer cells as a convenient model

system to study human transcription and chromatin.

Transcriptome profiling to reverse engineer
cancer networks
A commonly used approach to infer cancer gene regula-

tory networks from high-throughput transcriptomic data

starts by clustering samples according to sample-wise

correlations, followed by the definition of subtype-spe-

cific gene signatures using statistical tests for differential

gene expression. GeneSigDB, MSigDB, and OncoMine

[26–28] contain thousands of cancer-related gene signa-

tures, curated from the literature and online databases.

The consequent downstream analysis of a cancer gene

signature can involve pathway and Gene Ontology

enrichment analysis (e.g. WebGestalt, HumanMine, Inge-

nuity Pathway Analysis [29,30]). Next, to infer master

regulators and to predict their candidate target genes, two

types of bioinformatics approaches are commonly used.

Firstly, co-expression networks can be inferred by gene–

gene co-expression correlations, and can be further

structured into TF-target hierarchies using a variety of

approaches that infer dependencies between TFs and

candidate target genes (Figure 2a). Examples of methods

that use gene expression correlations (e.g. ARACNe [31]),

Boolean or Bayesian networks (BC3NET [32]), differen-

tial equations (GRNInfer [33]), or machine learning (e.g.
GENIE3 [34]); as reviewed by Liu [35�] and bench-

marked in Ref. [36]. Hallmark studies include Carro

et al., who applied ARACNe on high-grade gliomas with

increased mesenchymal gene expression [37�], inferring a

network controlled by 53 potentially important TFs,

including bHLH-B2, C/EBP, FOSL2, RUNX1 and

STAT3, some of which were experimental validated in

mouse models. In similar research, Gatta et al. investi-

gated TLX-connected oncogenic transcriptional net-

works in T-ALL, and used the ARACNe algorithm

and GSEA to identify RUNX1 as an important tumour

suppressor, which is often mutated in T-ALL [38�].

A complementary bioinformatics strategy to analyse the

regulatory underpinnings of a cancer gene signature is

based on cis-regulatory sequence analysis (Figure 2b).

Overall these methods exploit the fact that master regulator

TFs regulate their target genes, or regulons, by binding

sequence-specific cis-regulatory elements near them.

Methods like RSAT [39], OPOSSUM [40], PSCAN [41],

DIRE [42], and iRegulon [43] predict enriched motifs

across the upstream regions of all genes in a gene set (these

algorithms are benchmarked in Ref. [43]). Recent improve-

ments made such methods more powerful by including

cross-species comparisons, by using larger collections of
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Decoding cancer transcriptional states: biological systems, experimental methods and data. (a) Different types of samples and model systems can

be used for constructing gene regulatory networks in cancer including patient cohorts, cell lines and animal models. (b) These systems are used

to profile transcriptome and epigenome with the methods indicated in blue. These methods provide information on chromatin accessibility (DHS-

seq, scDHS-seq, ATAC-seq and scATAC-seq), gene expression (RNA-seq and scRNA-seq), histone modifications (H3K27ac, H3K27me3, TF ChIP-

seq), enhancer reporter activity (STARR-seq, CRE-seq, CHEQ-seq), and enhancer RNA (TT-seq, GRO-seq, PRO-seq). (c) Depending on the

experimental method used, findings can be summarized in gene signatures or enhancer signatures.
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