Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 209-224

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

ARAXA: Storing and managing Active XML documents

Claudio Ananias Ferraz?, Vanessa Braganholo®, Marta Mattoso®*

a Computer Science Department, COPPE/Federal University of Rio de Janeiro, Brazil
b Computer Science Department — IM/Federal University of Rio de Janeiro, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2008
Received in revised form

18 December 2009

Accepted 9 March 2010
Available online 3 April 2010

Active XML (AXML) documents combine extensional XML data with intentional data defined through
Web service calls. The dynamic properties of these documents pose challenges to both storage and data
materialization techniques. In this paper, we present ARAXA, a non-intrusive approach to store and
manage AXML documents. We also define a methodology to materialize AXML documents at query time.
The storage approach of ARAXA is based on plain relational tables and user-defined functions of Object-
Relational DBMS to trigger the service calls. By using a DBMS we benefit from efficient storage tools
and query optimization. Approaches without DBMS support have to process XML in main memory or

Keywords: K R . . ;
AcJt’ive XML provide for virtual memory solutions. One of the main advantages of ARAXA is that AXML documents
Storage do not need to be loaded into main memory at query processing time. This is crucial when dealing with

large documents. The experimental results with ARAXA prototype show that our approach is scalable
and capable of dealing with large AXML documents.

Peer-to-peer

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Several aspects in real world nowadays are dynamic: dynamic
Web pages, dynamic systems, dynamic databases, etc. In this
dynamic world, interoperability is crucial. Web services provide
simple and non-coupled access to service providers distributed
over the Web, which makes application interoperation easier. On
the other hand, XML documents have also been used to application
interoperability. In this scenario, it is natural to think on dynamic
documents. Such documents combine extensional content with
intentional content, which is obtained through Web service calls.
Abiteboul et al. [2] developed a framework to manipulate Active
XML (AXML) documents. In their framework, the results of the ser-
vice calls are embedded within the XML document. Fig. 1 shows
an example of an AXML document. As defined by Abiteboul et al.
[2], the <sc> nodes denote service calls. When called, the results
of these services are inserted in the document as siblings of the
corresponding <sc> node. This process is called materialization.

Such documents can be large, and since the tree-structure of
XML documents is verbose, there may be problems to manipulate
them in main memory. Alternative ways of storing and managing
these documents are needed. Additionally, one should be able to

* Corresponding author at: Computer Science/COPPE/UFR], Federal University of
Rio de Janeiro, P.O. Box 68511, 21941-972 Rio de Janeiro, R], Brazil.
Tel.: +55 21 2562 8694.
E-mail addresses: cferraz@cos.ufrj.br (C.A. Ferraz), braganholo@dcc.ufrj.br
(V. Braganholo), marta@cos.ufrj.br (M. Mattoso).

1570-8268/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2010.03.001

pose queries to stored AXML documents. For this, an XQuery query
engine or native XML DBMS could be used. However, the intentional
content of AXML documents must be managed during query pro-
cessing, that is, service calls must be coordinated. This is because
the activation of service calls may be associated to some query cri-
teria, that is, a service may need to be called to answer a given
XML query. Service calls may also be completely disassociated from
queries. They may need to be activated periodically, independently
of query execution time. Due to all of these factors, AXML docu-
ments cannot be managed directly with available non-active XML
management tools.

Abiteboul et al. [3,5] developed a platform to manage AXML
documents. This platform is publicly available [9] and has strong
“correction” properties, since it follows the AXML model, preserv-
ing document properties and types. Previous work on AXML mate-
rialization in this platform had mostly addressed typing control
[25], XML query processing [1], and data and Web services replica-
tion [8]. In the first version of this platform, AXML documents were
stored in the file system, which poses several drawbacks (security,
indexing, etc.). Currently, AXML documents can be stored in the
eXist [17] or Xyleme [42] XML DBMS. However, AXML materializa-
tion, i.e., query processing with service invocation is still processed
apart from the DBMS. Thus, in this approach, queries need to be
processed directly over those files, and documents still need to be
loaded into main memory. This has serious scalability problems,
especially when the documents are large. Thus, when storage and
query capabilities are not within the same solution, the AXML doc-
ument has to be manipulated by two different memory managers.
An alternative approach would be to use a DBMS, since it provides


http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:cferraz@cos.ufrj.br
mailto:braganholo@dcc.ufrj.br
mailto:marta@cos.ufrj.br
dx.doi.org/10.1016/j.websem.2010.03.001

210 C.A. Ferraz et al. | Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 209-224

Fig. 1. Example of an AXML document.

both features, and, depending on how documents are stored, it can
process queries without loading the documents entirely into main
memory. This is an attractive solution for large documents, which
are very frequent considering the verbose characteristic of XML.
To use a DBMS two issues need to be addressed. One is the DBMS
capability in storing and querying XML documents. The other is the
DBMS ability in working with Web service calls.

There are several approaches to store and query XML docu-
ments in DBMS. Some use Relational DBMS [15,19,23,32,36,38],
others use native XML storage [21,35]. However, the active part
of AXML documents poses some challenges both to store and to
query the documents. Relational and native XML DBMS do not sup-
port the active feature of such documents. Specifically, they do not
know how to deal with the dynamicity of the content, nor with
the external data sources (service providers). Relational DBMS is
able to support some dynamicity through SQL triggers. However,
service calls may need to be activated at query time and triggers
cannot be activated by SQL SELECT clauses. Thus, they do not have
the behavior nor the granularity needed to implement the active
characteristic of AXML documents. Consequently, they are not the
best alternative to the problem of storing and querying AXML.

Our proposed solution, ARAXA,! uses Object-Relational (OR)
DBMS. Although they cannot explicitly model the active behavior of
AXML, OR-DBMS are capable of dealing with complex objects and
associated methods. Methods can be seen as an active component.
This allows us to create a class of active objects that are responsi-
ble for coordinating service calls and their execution. By using these
resources, services can be called within SQL queries. It is also possi-
ble to create an agent that verifies the periodicity in which a service
needs to be called, and manages these calls automatically. To sup-
port XQuery within OR-DBMS, we can use existing XML-relational
storage mappings [16,22,24,39], and consequently, existing algo-
rithms that translate XQuery to SQL queries [22]. By using these
algorithms together with our service call functions, queries can be
processed with no need to load source documents into main mem-
ory, so very large documents can be processed efficiently without
memory limitations. We focus on using standard resources in OR-
DBMS, so that our solution can be applied to any OR-DBMS. In
our solution, we keep the properties of the formal foundation of
AXML documents [5,6]. At the same time, we offer more sophisti-
cated storage resources allied with consolidated query processing
capabilities.

1 ARAXA is a Brazilian city and a Portuguese acronym that loosely translated to
English means An object-Relational Approach to store XML Documents with Active
elements.

In summary, we have two main goals, where solutions and
experimental results are our main contributions:

(1) Scalability, which we address by managing query processing
and service calls materialization in a single environment (the
DBMS). This allows us to handle large XML documents without
needing to load them into main memory. Processing an XML
document in main memory is a requirement in previous solu-
tions and has strong limitations even for small XML documents;

(2) Single environment: we take advantage of DBMS algorithms
to deal with materialization and query processing in a single
environment (the DBMS itself), which contributes to improving
the materialization process.

The limitation of our approach resides in the mapping between
OR and XML. However, our results show a negligible overhead in
this transformation. In fact, this is highly compensated by the fact
that an organization can now keep their traditional data and AXML
documents in a single repository, thus maintenance cost can be
reduced, among other benefits such as data integration. Addition-
ally, XML support in these DBMS is always improving. Notice that
our solution is DBMS independent. Any OR-DBMS can be used.

This paper is an extended version of a previous published paper
[18]. In this paper, we detail our approach and present extensive
experimental results. Moreover, we present a detailed description
of our query processing methodology. This paper is organized as
follows. Section 2 presents the Active XML Platform developed by
the INRIA-GEMO group. Section 3 overviews related work and ana-
lyzes current solutions for storing and querying AXML documents.
In Section 4 we identify the difficulties to the problem and pro-
pose a storage schema to AXML documents. Section 5 presents
AXML query processing in our storage approach while Section 6
presents the software architecture of ARAXA and its prototype. Our
experimental results are discussed in Section 7. Finally, Section 8
concludes this work.

2. Background: Active XML

The Active XML platform developed by the INRIA-GEMO group
[9]is an open-source framework to support Active XML documents
in a P2P distributed environment. Abiteboul et al. [2] defined a for-
mal model for an AXML document where several materialization
strategies can be applied [25,28]. The materialization of Active XML
data can be either explicitly requested by the user or implicitly
triggered by queries that require the (materialized) content of a
document.

The internal architecture of an AXML peer, shown in Fig. 2, relies
on the following modules [9]:

® The AXML storage, which provides persistent storage for AXML
documents.

¢ The evaluator, whose role is to trigger the services calls embedded
inside AXML documents and to update the latter accordingly.

e The XQuery processor, which executes XQuery queries.

Peers communicate with each other only by the means of Web
service invocations, through their SOAP wrapper modules. They
can exchange XML data with any Web service client/provider, and
AXML data with AXML peers.

In this section we review some characteristics of the material-
ization of AXML documents as processed by the AXML platform.
These specificities were defined by the AXML model [6]. Partic-
ularly, we discuss their approach in handling the active part of
the documents. In Section 2.1 we show how services are analyzed
for query processing and then in Section 2.2 some materialization



Download English Version:

https://daneshyari.com/en/article/558589

Download Persian Version:

https://daneshyari.com/article/558589

Daneshyari.com


https://daneshyari.com/en/article/558589
https://daneshyari.com/article/558589
https://daneshyari.com

