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a  b  s  t  r  a  c  t

Logarithmic  transformation  is often  assumed  to  be  necessary  in  allometry  to accommodate  the  kind  of
variation  that  accompanies  multiplicative  growth  by plants  and animals;  and  the  traditional  approach  to
allometric  analysis  is  commonly  believed  to  have  important  application  even  when  the  bivariate  distri-
bution of interest  is  curvilinear  on the  logarithmic  scale.  Here  I  examine  four  arguments  that  have  been
tendered  in  support  of  these  perceptions.  All  the  arguments  are  based  on  misunderstandings  about  the
traditional  method  for  allometric  analysis  and/or  on a lack  of familiarity  with  newer  methods  of  non-
linear  regression.  Traditional  allometry  actually  has limited  utility  because  it  can  be  used  only to  fit a
two-parameter  power  equation  that  assumes  lognormal,  heteroscedastic  error  on  the  original  scale.  In
contrast,  nonlinear  regression  can fit  two-  and  three-parameter  power  equations  with  differing  assump-
tions about  structure  for  error  directly  to  untransformed  data.  Nonlinear  regression  should  be  preferred
to  the traditional  method  in  future  allometric  analyses.

© 2017  Elsevier  GmbH.  All  rights  reserved.
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1. Introduction

The early part of the 20th century was marked by widespread
interest among biologists in the use of simple power functions of
the form

y = a∗xb

to describe pattern in bivariate observations that follow a curvilin-
ear path on the arithmetic (=linear) scale. The predictor variable
(x) in the two-parameter equation typically was  a measure of body
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size (e.g., body length or body mass), and the response variable
(y) was  some measurement taken on the structure, organ, or pro-
cess of special concern. Some investigators at the time apparently
fitted the equation directly to scatterplots of untransformed data
by a series of trial-and-error approximations (e.g., Nomura, 1926;
Kleiber, 1932), or by fitting a curve by eye and then reading from
the graph (e.g., Hecht, 1913, 1916; Crozier and Hecht, 1914; Kleiber,
1932). Other workers, however, estimated the slope and intercept
of a straight line drawn by hand on a graph displaying logarithmic
transformations (or on a graph with logarithmic coordinates) and
then took antilogs for the coefficients to obtain parameters in the
power equation (e.g., Pearsall, 1927; Huxley, 1927a, b, 1932; Kunkel
and Robertson, 1928). And yet a fourth group of investigators fit-
ted straight lines to logarithmic transformations by ordinary least
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squares regression and then back-transformed the resulting equa-
tion to the arithmetic scale (e.g., Clark, 1928; Galtsoff, 1931; Brody
and Proctor, 1932; Green and Green, 1932). This last approach to fit-
ting the power function continues, for all intents and purposes, to be
in general use today (Warton et al., 2006; White et al., 2012; White
and Kearney, 2014) and has come to be known as the traditional
allometric method (e.g., Packard, 2014).

The traditional allometric method has had its critics over the
years (e.g., Thompson, 1943; Smith, 1980, 1984; Lovett and Felder,
1989; Bales, 1996), and it recently has come under renewed
scrutiny (e.g., Lagergren et al., 2007; Sartori and Ball, 2009; Packard,
2014, 2015, 2016, 2017a,b). Supporters of the protocol are under-
standably concerned that a large body of published research might
be undermined if criticisms of the method were taken seriously,
and they consequently have mounted a spirited defense of their
research paradigm (e.g., Klingenberg, 1998; Nevill et al., 2005;
Kerkhoff and Enquist, 2009; Xiao et al., 2010; White et al., 2012;
Ballantyne, 2013; Glazier, 2013; Lai et al., 2013; Mascaro et al.,
2014; Niklas and Hammond, 2014; Lema&tre et al., 2015). However,
the defense is based in many instances on ill-defined arguments
and/or misunderstanding of various statistical methods. Here I
examine four of the most common misconceptions.

2. Misconceptions about bivariate allometry

2.1. Form of the allometric equation

Philip Gingerich has proposed that “the allometric equation is
not a power function of x and y as is so often stated, but rather a
linear function of log x and log y” (Gingerich, 2000, p. 220). The
suggestion was based on his study of normal vs. lognormal distri-
butions for random error (i.e., residuals) in samples of biological
data and not on an explicit analysis of allometric variation. The
assertion consequently rests on something of an extrapolation, but
it may, nonetheless, describe contemporary research on allomet-
ric variation fairly accurately. Logarithmic transformation was used
in the 1920s and 1930s to fit simple, two-parameter power func-
tions to observations expressed on the arithmetic scale. As time
went on, however, transformation became less and less a means
to fit a power function to untransformed data, and the equation
of simple allometry simultaneously became more and more a jus-
tification for performing the transformation. Thus, contemporary
analyses of allometric variation typically begin with a token nod to
the equation of simple allometry, proceed with the rote transfor-
mation of data to logarithms, and then continue with the fitting of
a straight line to the new distribution (Smith, 1980, 1984). Valida-
tion of the fitted model usually is limited to a graphical display of
the equation in log domain, and R2 may  also be reported as a mea-
sure of goodness of fit. However, the quality of the model seldom
is assessed graphically on the original scale (Packard, 2017b), and
R2 for the fit to logarithms has no bearing on strength of the rela-
tionship between the untransformed variables. Thus, it is easy to
believe that the allometric equation in current practice is, in fact,

log(y) = log(a) + b∗log(x).

If the allometric equation actually is a linear function of log(y)
and log(x), future reports of allometric variation should be framed
differently. For instance, reports of new research need not (and
probably should not) begin with a reference to a two-parameter
power function, because the power function is neither necessary
nor relevant to the analysis; and no attempt needs to be made at
interpretation on the original scale, because the original scale also
is irrelevant. These recommendations are consistent with the com-
mon  belief that observations in logarithmic form are at least as
meaningful as untransformed values (e.g., Peters, 1983; Kerkhoff

and Enquist, 2009; Glazier, 2013; Lai et al., 2013), and the relation-
ship of putative interest is, after all, between log(y) and log(x).

It is unclear how this relationship between log(y) and log(x) is to
be interpreted in biologically meaningful terms when the findings
cannot be placed in the context of the original measurements (e.g.,
Reyment, 1971; Finney, 1989; Osborne, 2002; Feng et al., 2013).
This problem of interpretation is an unavoidable consequence of
accepting at face value the aforementioned premise about the allo-
metric equation. Gingerich had an important point to make about
the kind of random error that may  occur in biological data, but
his characterization of the allometric equation should not be taken
literally. The equation of simple allometry is

y = a∗xb,

as so often stated (e.g., Huxley and Teissier, 1936; Huxley, 1950),
and the linearized expression

log(y) = log(a) + b∗log(x)

merely provides a way to estimate parameters in the allometric
equation via an intermediate step involving logarithms (e.g., West
and West, 2012). In other words, a straight line fitted to logarithms
is a means to an end and not an end in itself. The linearized expres-
sion was an essential tool early in the last century, because neither
statistical theory nor statistical practice was  sufficiently advanced
at the time to permit fitting the power function directly to untrans-
formed observations. However, the equation now can be fitted to
untransformed data by nonlinear regression, and the issue of nor-
mal  vs. lognormal error can be addressed simultaneously by the
computational algorithm (Packard, 2015, 2016, 2017a).

2.2. Proportional change and relative growth

Several investigators − all of whom cite Huxley (1932) for their
rationale − have argued that logarithmic transformation (i.e., the
traditional allometric method) is necessary in allometric research
because allometry is all about proportional change and relative
growth (e.g., Kerkhoff and Enquist, 2009; Glazier, 2013). But what,
exactly, is meant by “proportional change” and “relative growth,”
and is logarithmic transformation really necessary for describing
these processes?

Julian Huxley’s treatise on “Problems of Relative Growth”
(Huxley, 1932) focused on how some part of the body changes in
its proportion to the body as a whole as both the part and body
increase in size. At the time of Huxley’s writing, proportional (or
relative) size of a part was commonly expressed as a percentage of
size of the body, and relative growth was reflected in the chang-
ing percentage as the animals (or plants) increased in overall size
(e.g., Huxley, 1924a). This expression of relative growth could be
represented graphically (see Fig. 2 in Huxley, 1932), but the actual
relationship between the structure of interest and body size could
not be quantified accurately owing to x being a component of both
the predictor and response variables (see Pearson, 1897; Atchley
et al., 1976; Albrecht et al., 1993; Kronmal, 1993).

Huxley’s desire to express the relationship between x and y
mathematically is what led to his independent discovery of the
formula for simple allometry (Reeve and Huxley, 1945), which
provides a simple, yet explicit, mathematical description for the
relationship between the variable of interest and body size. The
two-parameter power function can be rearranged algebraically to
show that the response variable, y, varies as a constant proportion
of xb (e.g., Newcombe, 1948; White et al., 2012), or

a  = y/xb

where a and b are fitted constants. Because y maintains a fixed
proportional relationship to xb as both y and x increase in size,
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