Available online at www.sciencedirect.com

‘ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web 5 (2007) 28-38

JOURNAL OF

Semantics)

www.elsevier.com/locate/websem

Provenance-based validation of e-science experiments

Simon Miles *, Sylvia C. Wong, Weijian Fang, Paul Groth,
Klaus-Peter Zauner, Luc Moreau

School of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

Received 15 June 2006; received in revised form 30 October 2006; accepted 30 November 2006
Available online 4 January 2007

Abstract

E-science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed,
itis useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards,
not necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are
no existing frameworks for validating such experiments in today’s e-science systems. Users therefore have to rely on error checking performed
by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions.
The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a
registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested

in a bioinformatics application that performs protein compressibility analysis.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Provenance; E-science; Process validation; Semantic service description

1. Introduction

Very large scale computations are now becoming rou-
tinely used as a methodology to undertake scientific research:
success stories abound in many domains, including physics
(griphyn.org), bioinformatics (mygrid.org.uk), engineering
(geodise.org) and geographical sciences (earthsystemgrid.org).
These large scale computations, which underpin a scientific pro-
cess usually referred to as e-science, are ideal candidates for use
of Grid technology [8].

E-science experiments are typically formed by invoking mul-
tiple services, whose compositions are modelled as workflows
[9]. Thus, experimental results are obtained by executing work-
flows. As part of the scientific process, it is important for
scientists to be able to verify the correctness of their own
experiments, or to review the correctness of their peers’ work.
Validation ensures results generated from experiments are mean-
ingful.

* Corresponding author. Tel.: +44 23 8059 8309.
E-mail addresses: sm@ecs.soton.ac.uk (S. Miles), sw2@ecs.soton.ac.uk
(S.C. Wong), wf@ecs.soton.ac.uk (W. Fang), pg03r @ecs.soton.ac.uk (P. Groth),
kpz@ecs.soton.ac.uk (K.-P. Zauner), l.moreau@ecs.soton.ac.uk (L. Moreau).

1570-8268/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2006.11.003

Traditionally, program validation has been carried out in
two complementary manners. On the one hand, static ver-
ification analyses program code or a workflow before it
is executed and establishes that the program/workflow sat-
isfies some properties. These verifications are extensively
researched by the programming language community. Exam-
ples include type inference, escape analysis and model checking.
They typically depend on the semantics of the program-
ming language being analysed. On the other hand, static
verification is complemented by run-time checking, which
is carried out when the program executes, and verifies that
data values satisfy constraints, expressed by either types or
assertions.

Such validation methods suffer from limitations when work-
flows are executed in dynamic open environments. First,
programs (or workflows) may not be expressed in languages
that analysis tools operate on, or may not be directly available
because they are exposed as services, hereby preventing static
analysis. Second, in general, in open environments, we can-
not make the assumption that services always check that their
inputs or outputs match their interface specifications (if avail-
able at all); furthermore, such interfaces may be under-specified
(for instance, many bioinformatics services tend to process and
return strings encoding specific biological sequence data); as a


http://www.griphyn.org/
http://www.mygrid.org.uk/
http://www.geodise.org/
http://www.earthsystemgrid.org/
mailto:sm@ecs.soton.ac.uk
mailto:sw2@ecs.soton.ac.uk
mailto:wf@ecs.soton.ac.uk
mailto:pg03r@ecs.soton.ac.uk
mailto:kpz@ecs.soton.ac.uk
mailto:l.moreau@ecs.soton.ac.uk
dx.doi.org/10.1016/j.websem.2006.11.003

S. Miles et al. / Web Semantics: Science, Services and Agents on the World Wide Web 5 (2007) 28-38 29

result, no guarantee exists that specific, domain-level types will
be checked dynamically.

A new, more specific limitation comes from the evolving
conduct of e-science. Studies of user practice have shown that
rapid development cycles are being adopted by e-scientists,
in which workflows are frequently modified and tuned and
scientific models are evolved accordingly. As a result, it is
important for scientists to be able to verify that previous
experimental results are compatible with recent criteria, mod-
els and requirements. Since these models did not necessarily
exist at experiment design or execution time, it is a neces-
sity to perform such validation after the experiment has been
completed.

The provenance of a piece of data denotes the process by
which it is produced. Provenance-aware applications are appli-
cations that record documentation of their execution so that the
provenance of the data they produce can be obtained and rea-
soned over. We have studied a range of e-science application
domains and established that they have a range of requirements
for provenance-awareness [15]. In the former requirements
study, many examples of experiment validation were discovered
and in varying domains. For example, in a distributed parti-
cle physics experiment, there was a requirement to verify that
those library versions used to analyse the experiment data were
not ones known to contain bugs. In partially lab-based biology
and chemistry experiments, requirements for validation included
checking that health and safety rules had been followed by exper-
iments in the past month. In a more general, computer-science
centred example [25], processes can be validated to ensure, for
fault tolerance, that multiple services assumed to be independent
did not actually depend on the same, possibly faulty, service.
We refer the reader to the survey for the full range of such use
cases.

In this paper, our thesis is that provenance-based validation
of experiments allows us to verify their validity after experi-
ments have been conducted. Specifically, our contributions are:
(a) a provenance-based architecture to undertake validation of
experiments; (b) the use of semantic reasoning in undertaking
validation of experiments; (c) an implementation of the archi-
tecture and its deployment in a bioinformatics application in
order to support a set of use cases. Our experimentation with
the system shows that our approach is tractable and performs
efficiently.

The structure of the paper is as follows. Section 2 describes
some use cases we have identified that require experiment valida-
tion. Section 3 briefly discusses current approaches to e-science
experiment validation and explains why it is necessary to per-
form validation after an experiment was executed. Section 4
introduces the proposed framework for validation of workflow
execution. Section 5 then describes how the architecture can
be applied to the use cases introduced in Section 2. In Section
6, we discuss how semantic reasoning is essential in properly
establishing the validity of experiments. Section 7 then presents
results from an implementation of the validation framework with
an e-science application (specifically, the protein compressibil-
ity analysis experiment). The paper finishes with discussion in
Section 8 and conclusions in Section 9.

2. Use cases

The motivation for this work comes from real problems found
by scientists in their day-to-day work. Therefore, in this sec-
tion, we introduce a number of use cases in the bioinformatics
domain where it is necessary to perform some form of validation
of experiments after they have been completed. As identified in
the use cases below, while service-based validation can only
be performed at run-time, it is sometimes necessary to validate
an experiment after it has been executed. Third parties, such
as reviewers and other scientists, may want to verify that the
results obtained were computed correctly according to some cri-
teria. These criteria may not be known when the experiment was
designed, because criteria evolve as science progresses. Thus,
it is important that previously computed results can be verified
according to revised sets of criteria.

Use Case 1 ((Interaction validity, interface level)). A biologist,
B, performs an experiment on a protein sequence. One stage
of this experiment involves generating a pre-specified number
of permutations of that sequence. Later, another biologist, R,
judges the experiment results and considers them to be suspi-
cious. R determines that the number of permutations specified
was an invalid value, e.g. it was negative.

In this example, we consider that the service provider could
have specified a restriction for the number of permutations to
non-negative integers in the service schema, since the parameter
only makes sense for non-negative integers. However, this does
not guarantee that the service will validate the data against the
schema at run-time. In general, whether validation is carried out
at run-time is service specific.

In Use Case 1, B could have entered a negative value for
the number of permutations. In this case, the value is incorrect
because it does not conform to the restrictions and requirements
as specified by the interface document of the service. By validat-
ing the experiment using its provenance, R can determine that B
entered an invalid value for the number of permutations, and thus
the results generated by the experiment were not meaningful.

Use Case 2 ((Interaction validity, domain-level)). A bioinfor-
matician, B, downloads a file containing sequence data from a
remote database. B then processes the sequence using an anal-
ysis service. Later, a reviewer, R, suspects that the sequence
may have been a nucleotide sequence but processed by a ser-
vice that can only analyse meaningfully amino acid sequences.
R determines whether this was the case.

Nucleotides and amino acids are two separate classes of
biological sequences, but the symbols used in the syntax of
nucleotides are a subset of those used for amino acids. There-
fore, it is not always possible to detect which type of sequence
is used by superficially examining the data. The service used in
Use Case 2 could require an amino acid sequence as its input. If a
nucleotide sequence was accidentally used rather than an amino
acid sequence, the problem would not be detected at run-time,
and the experiment results would not be meaningful.

Given that many bioinformatics services operate on strings,
the biological interpretation of a piece of data is information



Download English Version:

https://daneshyari.com/en/article/558681

Download Persian Version:

https://daneshyari.com/article/558681

Daneshyari.com


https://daneshyari.com/en/article/558681
https://daneshyari.com/article/558681
https://daneshyari.com

