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This paper presents a Gaussian mixture (GM) implementation of the Bernoulli filter for extended target 
tracking, which we call the extended target GM Bernoulli (ET-GM-Ber) filter. Closed form expressions for 
the ET-GM-Ber filter recursions are obtained. A clustering step is integrated into the measurement update 
stage in order to have a computationally tractable filter. Performance of the proposed filter is tested 
both on the simulated data and experimental data collected using an ultra-wideband (UWB) localization 
system. Simulations and experimental results demonstrate the accurate and effective performance of the 
proposed filter.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Target tracking can be considered as maintaining estimates of 
the current state of the target by processing the measurements 
collected by a sensor [1]. The classical target tracking approach, 
which assumes that each target gives rise to at most one mea-
surement per time step, is a well-established research area. How-
ever, with the advent of modern, high resolution sensors such 
as ultra-wideband (UWB) sensors and automotive radars, targets 
have to be treated as extended targets which can produce mul-
tiple measurements per time step. Considering extended target 
tracking framework, we are not interested in estimating the po-
sition of each point that generates the individual detections since 
these point positions in general fluctuate depending on the time-
varying sensor-to-target geometry. In extended target tracking, we 
are interested in position estimation of the target as a whole. Re-
cent advances in electronic industry and computation speeds have 
made extended target tracking feasible and this has attracted re-
searchers’ attention [2,3]. Concerning the extended target tracking, 
several different applications are studied in the literature [4–7].

Random finite set (RFS) based tracking approach introduced by 
Mahler has emerged as a promising alternative to the traditional 
association-based methods [8]. As a mathematically principled and 
theoretically optimal framework, the RFS paradigm has attracted 
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considerable research interest during the last decade [9–11,8,12,
13]. Different approximations have been developed recently for 
computationally tractable solutions: the Bernoulli filter [8,12,13], 
the probability hypothesis density (PHD) filter [14,15] the cardi-
nalized PHD (CPHD) filter [16,17], the multi-Bernoulli filter [8,18]
and the labeled versions of corresponding RFS filters [19]. The PHD 
filters have been successfully used in many different applications 
[20–25]. PHD-based approaches have also been developed for ex-
tended target tracking [26–28,2,29].

The Bernoulli filter is the exact Bayes filter which propagates 
the parameters of a Bernoulli RFS for a single dynamic system 
which can randomly switch on and off (i.e. target birth/death) [30,
9,11]. Compared to the works done in extended target tracking us-
ing the PHD-like filters, other than the works of Ristic et al. in [30,
7], there exists almost no work on extended target tracking using 
the Bernoulli filter. Only, in a very recently published article, au-
thors propose a filter for multiple extended target tracking based 
on labeled RFS [31]. In this work, we present a Gaussian Mix-
ture (GM) implementation of the extended target Bernoulli filter 
which can jointly detect and track a single target in the presence of 
detection uncertainty, target-measurement rate uncertainty, noise 
and false alarms. GM implementation of the RFS-based filters has 
been widely used, as it provides a closed form solution to filter re-
cursions under linear Gaussian target dynamics and measurement 
models. Furthermore, one of the main benefits of GM implemen-
tation is that its state estimates are obtained from the posterior 
intensity in an easy and efficient manner [15]. In the proposed fil-
ter, the clustering approach in [27] is adapted into the extended 
target Bernoulli filter in order to have a tractable implementa-
tion. The output of a clustering step is used to estimate the time 
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varying number of scatters of the extended target. Performance of 
the proposed filter, which is called as the extended target Gaus-
sian Mixture Bernoulli filter (ET-GM-Ber), is compared with the 
point-target GM Bernoulli (GM-Ber) and extended target Gaussian 
Mixture PHD (ET-GM-PHD) filters [30].

The novelty of this work is two-fold:

• We present the GM implementation of the Bernoulli filter, 
which assumes binomial RFS model of target-originated mea-
surements, for extended target tracking.

• We demonstrate the performance of the proposed filter using 
the measurements of an UWB sensor network.

In the UWB sensor network experiments, we use the Ubisense 
UWB Real-Time Location Systems (UWB-RTLS) [32]. UWB has 
emerged as a very promising technology having certain advantages 
such as high resolution, robustness to multi-paths, low power and 
small size [33–35]. Thus, UWB sensor systems can be considered 
as a leading technology for many applications [36,37,22,38] and 
they are particularly well-suited for in-door positioning [33,39,40,
38]. Target tracking with UWB sensors under point-target assump-
tions has been considered so far [41–44]. However, there exists 
no work employing the concept of extended target using UWB 
sensors. Therefore, our work presents an extended target tracking 
application with UWB sensors for the first time. We show that 
extended target tracking with UWB technology is practical.

The paper is organized as follows. Section 2 presents the RFS 
based problem formulation and Bernoulli filter for extended target 
tracking. Section 3 gives the details of the ET-GM-Ber filter im-
plementation. Simulation results are presented in Section 4 and 
experiment results are given in Section 5. Finally, Section 6 pro-
vides conclusions and possible future research ideas.

2. Problem formulation

In this section, we provide some key points of the RFS frame-
work to be used in the proposed ET-GM-Ber filter.

2.1. Random finite sets (RFS) based filtering

An RFS can be considered as a random variable whose val-
ues are unordered finite sets. Thus, the cardinality of a RFS X is 
randomly distributed and modeled by a discrete probability dis-
tribution ρ(n) = P (|X| = n), where x1, . . . , xn ∈ X , n ∈ N0 and N0
denotes the set of natural numbers including zero. A RFS X is 
completely characterized by its cardinality distribution ρ(n) and 
a family of symmetric joint distributions pn(x1, ..., xn). By employ-
ing the Mahler’s finite set statistics (FISST) [8], f (X) represents 
the FISST probability density function (FISST PDF) [8,30]. This PDF 
is uniquely specified by ρ(n) and pn(x1, ..., xn) as follows [30]:

f ({x1, ...,xn}) = n!ρ(n)pn(x1, ...,xn) . (1)

The set integral is defined as [8]:∫
f (X)δX =

∞∑
n=1

1

n!
∫

f ({x1, ...,xn})dx1, ...,xn . (2)

As in classical PDF, f (X) integrates to one since it is also a PDF 
defined in FISST framework.

In the RFS framework, both targets and measurements take val-
ues as unordered finite sets. Thus, the target state and measure-
ment RFS can be formulated as:

Xk = {xi
k, ...,xM(k)

k } ∈ F(X ) , (3)

Zk = {zi
k, ..., zN(k)

k } ∈ F(Z) , (4)

where M(k) and N(k) correspond to the number of targets and 
measurements respectively at time k, F(X ) and F(Z) are the 
set of all possible finite sets of state space X and measurement 
space Z correspondingly. The multi-target state evolution is de-
scribed by a first-order Markov process with transitional density 
φk|k−1(Xk|Xk−1). The likelihood function of Zk is represented by 
ϕk(Zk|Xk). Furthermore, the sequence of measurements up to time 
k is denoted by Z1:k . Suppose that at time k −1, the posterior FISST 
PDF of multi-target state fk−1|k−1(Xk−1|Z1:k−1) is known. Then, the 
predicted and updated multi-target posterior densities are given by 
[8]:

fk|k−1(Xk|Z1:k−1)

=
∫

φk|k−1(Xk|Xk−1) fk−1|k−1(Xk−1|Z1:k−1)δXk−1 , (5)

fk|k(Xk|Z1:k) = ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1)∫
ϕk(Zk|Xk) fk|k−1(Xk|Z1:k−1)δXk

. (6)

Next, we define some common RFSs relevant to our work [30].

2.1.1. Bernoulli RFS
The cardinality of a Bernoulli RFS is Bernoulli distributed. 

Therefore, the Bernoulli RFS can either be empty set with probabil-
ity 1 − q or it can have one element with probability q distributed 
over the state space X with PDF p(x). The FISST PDF of a Bernoulli 
RFS X is given by:

f (X) =
{

1 − q if X = ∅
q · p(x) if X = {x} (7)

2.1.2. Binomial RFS
A Binomial RFS X is an independent identically distributed (IID) 

cluster RFS. Its cardinality distribution is a binomial distribution 
with parameters L (number of binary experiments) and q (the 
probability of success of each of the experiments):

ρ(n) =
(

L

n

)
qn(1 − q)L−n, n = 0,1,2, ..., L. (8)

Its FISST PDF is defined as:

f (X) = L!
(L − |X|)!q|X|(1 − q)L−|X| ∏

x∈X

p(x) . (9)

When L = 1, the Binomial RFS reduces to the Bernoulli RFS.

2.1.3. Poisson RFS
A Poisson RFS X is a kind of IID cluster RFS and its cardinality 

is Poisson distributed such that:

ρ(n) = e−λλn

n! , n = 0,1,2, ... (10)

Its FISST PDF is defined as:

f (X) = e−λ
∏
x∈X

λp(x) . (11)

2.2. Bernoulli filter for an extended target

In this section, we summarize the key points of the Bernoulli 
filter for extended target tracking [8,30]. Bernoulli filter is also a 
Bayesian optimal recursive filter, thus it involves two steps: pre-
diction and update. As usual, prediction is achieved based on the 
state transition density which describes the object interim motion 
between measurements according to Eq. (5). And then, update step 
is applied based on the likelihood function which describes the 
sensor model according to Eq. (6).
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