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a b s t r a c t

We present the Iterative/Causal Subspace Tracking framework (I/CST) for reducing noise in continuously
monitored quasi-periodic biosignals. Signal reconstruction of the basic segments of the noisy signal (e.g.
beats) is achieved by projection to a reduced space on which probabilistic tracking is performed. The
attractiveness of the presented method lies in the fact that the subspace, or manifold, is learned by incor-
porating temporal, morphological, and signal elevation constraints, so that segment samples with similar
shapes, and that are close in time and elevation, are also close in the subspace representation. Evaluation
of the algorithm’s effectiveness on the intracranial pressure (ICP) signal serves as a practical illustration of
how it can operate in clinical conditions on routinely acquired biosignals. The reconstruction accuracy of
the system is evaluated on an idealized 20-min ICP recording established from the average ICP of patients
monitored for various ICP related conditions. The reconstruction accuracy of the ground truth signal is
tested in presence of varying levels of additive white Gaussian noise (AWGN) and Poisson noise processes,
and measures significant increases of 758% and 396% in the average signal-to-noise ratio (SNR).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Intracranial pressure (ICP) is defined as the pressure inside the
skull and is a marker of the brain’s ability to compensate for cerebral
pathophysiological changes. Although intraventricular catheters
and intraparenchymal sensors are widely used for ICP monitor-
ing, their invasiveness presents considerable risk to the patient,
and therefore are only used when the risks associated with a
pathological increase in ICP outweighs those associated with its
invasive monitoring. Clinically, ICP is a fundamental physiologic
parameter that, if elevated, can lead to a pathological reduction in
cerebral blood flow and possible herniation of the brain, resulting in
irreversible brain damage or death if left untreated. Currently, the
ICP signal is used to diagnose dangerous increases in average pres-
sure (computed using a moving average) and helps guide treatment
with recommendation based on ICP greater than 20 mmHg for more
than 5 min [1]. Although the average ICP is monitored in modern
clinical environments, subsequent higher-order analysis on the ICP
pulse waveform often requires complex processing, expert anno-
tations, and corrections due to egregious noise introduced during
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measurement from electronic equipment, electrode transients, dis-
placement of the sensor, or even the patient shifting their posture.
Such conditions make it difficult for real-time monitoring software
to properly interpret ICP waveform data (Fig. 1).

The conventional approach to noise reduction is to filter the
input signal. When noise is constrained to particular frequencies,
such as 60 Hz tonal noise, we can retrieve most of the desired sig-
nal by applying bandstop (notch-type) filters. In the general case,
when a model of the desired signal’s spectral content is known,
along with an estimate of the noise distribution, adaptive filtering
may be used to construct a mean-square optimal filter [2]. However,
the problem is more challenging when noise has a spectral density
which overlaps significantly with that of the desired signal. Chan-
nel estimation is fickle in this application, because biosignals are
not easily constructed from band-limited primitives. Specifically, it
is increasingly difficult to identify a generic noise-floor when the
relevant spectral content of the signal is not entirely known.

Another popular approach to the broadband noise problem is
to estimate the original signal by assuming some stochastic mixing
process. A mixture model uses knowledge of the expected degrada-
tion to estimate the most likely values for the originally transmitted
signal [3]. When the number of possible source-transmitted sym-
bols is relatively low and discretized, expectation maximization
(EM) and maximum a posteriori estimation (MAP) algorithms can
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Fig. 1. Illustration of a typical intracranial pressure signal (ICP) recorded in clinical
conditions. ICP typically exhibits significant noise on its envelope that challenges its
morphological analysis.

be used to estimate the most likely source-transmitted symbol,
although an initial characterization of both the source and noise
distributions is required.

In the case of ICP waveform, the number of possible pulse
shapes is not finite and assigning a discrete estimate from a bank
of reference signals is not an optimal solution to preserve patient-
specific features. Moreover, a static characterization of the noise
distribution is not always possible in clinical environments, since
degradations may vary between sites and may be introduced from
a combination of sources (including patient movement, sensor
displacement, electronic noise, type of sensor) in varying propor-
tion. To tackle this problem, we present a method for reducing
noise in continuously monitored quasi-periodic biosignals with-
out prior knowledge of the noise distribution. Noise is reduced by
reconstructing an estimate of the original signal from a mixture of
reference signals. The references are selected by searching the clos-
est neighbors of an input sample in a reduced dimensional space.
By tracking the position of consecutive samples in the subspace,
causal correction transformations can be iteratively applied to the
collected data stream.

There has been significant interest in modeling the morphol-
ogy of the ICP waveform [4–9]. One of the main findings of those
studies is to characterize the relationship between the average ICP
value and the signal morphology (up to the beat level). By cluster-
ing the morphology of the waveform for various levels of ICP, as
we will illustrate later in this paper, it can be observed that the ICP
waveform at the beat level has shape features that vary along with
the ICP. Based on this strong correlation between the ICP value and
signal morphology, we introduce a modified nonlinear subspace
learning algorithm to accent this correlation by warping the learned
subspace to reflect constraints about time, morphology, and aver-
age ICP. The intuition behind the algorithm is that the level of ICP
implicitly constraints the possible waveform morphologies which
can be used to refine the denoising process.

The structure of this paper is as follows: we first present the
dataset and the ground truth used during our experimental evalu-
ation in Sections 2.1 and 2.2. The mechanics of the Iterative/Causal
Subspace Tracking (I/CST) is presented in Section 2.3, ending with
the formulation of a simple I/CST implementation (Algorithm 1).
The performance of this implementation is evaluated for ICP sig-
nals in Section 2.4 and the results presented in Section 3. This
work results in a noise reduction framework capable of real-time

performance, which enables a more reliable analysis of continuous
waveform characteristics, as discussed in Section 4.

2. Methods

2.1. Data source

The dataset originated from the University of California, Los
Angeles (UCLA) Medical Center, with approval from the institu-
tional review board (IRB) for use in this study. This is a retrospective
study on patients who were being treated for various intracranial
pressure related conditions including idiopathic intracranial hyper-
tension, Chiari syndrome, and slit ventricle patients with clamped
shunts. A total of 60 patients were considered for this study
and their ICP and electrocardiogram (ECG) signals were recorded
continuously. ICP was sampled continuously at 400 Hz using an
Codman intraparenchymal microsensor (Codman and Schurtleff,
Raynaud, MA) placed in the right frontal lobe. An expert researcher
retrospectively identified intracranial hypertension (IH) episodes
and annotated the time of the elevation onset, elevation plateau,
and invasive cerebrospinal fluid drainage in each patient recor-
ding. Within our cohort, 30 patients did not present any IH episodes
and were excluded from the study. An additional 5 patients were
excluded due to signal drop and artifacts that did not let the expert
identify IH episodes with a high level of confidence. A total of 70
IH episodes were extracted from the ICP signal of the remaining
25 patients. Each segment included 20-min of data, capturing the
transition from a state of normal (0–20 mmHg) to elevated ICP
(>20 mmHg). The segments were time-aligned such that they con-
tain 15 min of data before the plateau and 5 min after.

2.2. Pre-processing and ground truth

Individual ICP pulses were first extracted from each 20-min
recording using a correlation of ICP with R-wave peaks in the ECG
signal [10]. Because this method is dependent only locally on the
R-wave peaks, the segmentation is sufficiently accurate and largely
invariant to heart-rate variability [11]. The extracted pulses were
distilled into 3 variables: (1) amplitude and length normalized vec-
tor containing pulsatile information, (2) mean value of the original
pulse, and (3) starting time-index of the pulse relative to the ele-
vation plateau.

The normalization is necessary because pulses extracted by the
segmentation may differ in length, and require a consistent size
to facilitate morphological comparisons of the form ||xi− xj||. As
such, each segmented ICP pulse si was normalized to a fixed-length
vector xi ∈ Rn taking values between 0 and 1, and placed into a
matrix of vector samples X ∈ Rm×n. If the length of the pulse si
was larger than the chosen length n = 500, the extra values at the
end of the pulse were ignored. If the pulse was smaller than n, the
last value si[end] was repeated to fill the vector. As written formally,

x′i(j = 1, . . ., n) =
{

si[j] if j ≤ n

si[end] otherwise
(1)

xi(j = 1, . . ., n) = x′i −min(x′i)
max(x′i)−min(x′i)

(2)

An idealized ICP signal is then generated by accumulating sim-
ilar beats and computing their average. The notion of similarity is
subject to change here and is largely dependent on the intended
application. In our tests, for example, beats are clustered based
on their relative-time index (i.e. by binning the pulses starting
within every 3 s interval). This strategy, however simple, preserves
a notion of morpho-temporal locality in the ICP signal, a property
that is exploited in the tracking algorithm (Section 2.3.2). Finally, to
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