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The benefits of applying two mask operations in two different rotated axes of the time frequency 
(TF) plane are well known especially for signal restoration applications. Compared to just applying a 
single mask operation in a single rotated axis of the TF plane, it has been shown that applying two 
mask operations in two different rotated axes of the TF plane carefully can improve the restoration 
performances. However, there is no systematic approach for the globally optimal joint design of these 
two sets of mask coefficients in two different predefined rotated axes of the TF plane. In this paper, 
this optimal joint design problem is formulated as a nonconvex optimization problem. Then, a modified 
filled function method is employed for finding the globally optimal solution of the optimization problem. 
Computer numerical simulation results show that the obtained restoration system outperforms existing 
ones.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For signals having spectral contents which are invariable or 
changes slowly with respect to the time, filtering in the fre-
quency domain is a powerful method for restoring signals. How-
ever, this approach is not appropriate when there is a devia-
tion from the stationarity. This is because the modification of 
the components in the frequency domain has a global effect 
on the waveform in the time domain. For instance, for those 
signals whose central frequencies vary linearly with respect to 
the time such as the linear frequency modulated echoes oc-
curring in radar or ultrasound applications [4], a typical band-
pass filter can only attenuate the portion of the signal lying 
outside a horizontal strip in the TF plane. On the other hand, 
if a mask operation is applied in a rotated axis of the TF 
plane, the corresponding strip will be tilted accordingly [1–3]. 
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Hence, this mask operation can achieve a better performance 
for the restoration of this signal. This is because the energy 
of this signal is concentrated along the strip tilted in the TF 
plane.

To further customize the shape of the mask, two different strips 
are employed by applying two different mask operations in two 
different rotated axes of the TF plane. It has been shown that this 
approach could improve the restoration performance compared to 
just applying a single mask operation in a single rotated axis of 
the TF plane [5,6,11,12]. However, the globally optimal joint design 
of these two sets of mask coefficients in two different predefined 
rotated axes of the TF plane is a nontrivial task as the objective 
function of the optimization problem is nonconvex. In general, it is 
very challenging to find the globally optimal solutions of noncon-
vex optimization problems [8–10]. To address this difficulty, only 
one set of mask coefficients is designed in each iteration while an-
other set of mask coefficients remains unchanged. Once one set 
of mask coefficients is obtained, this obtained set of mask coeffi-
cients remains unchanged and another set of mask coefficients is 
designed. The whole design procedures are iterated until these two 
sets of mask coefficients converge [5,11,12]. However, there are 
two main drawbacks of this method. The first disadvantage of this 
method is that the convergence of the algorithm is in general not 
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guaranteed. Second, the obtained solution is likely to be trapped 
in a local minimum of the optimization problem even though the 
algorithm converges. In order to obtain a better solution, the com-
mon approach is to repeat the entire procedures using different 
initial conditions and take the solution corresponding to the lowest 
objective functional value as the final solution. Although a better 
result could be obtained, this method still cannot guarantee to ob-
tain the globally optimal solution. Also, as the objective functional 
value of the new trial could be higher than that of the previous 
trial, many computational efforts are wasted and this method is 
neither efficient nor effective.

This main objective and the contribution of this paper is to 
employ a filled function method to perform the globally optimal 
joint design of two sets of mask coefficients in two different pre-
defined rotated axes of the TF plane. The working principle of 
using the filled function to find the globally optimal solution of 
an optimization problem is as follows. By finding a local minimum 
of the filled function at a point slightly deviated from the cur-
rent local minimum of the original optimization problem, a lower 
objective functional value of the filled function can be obtained. 
Hence, the filled function could kick away from the current local 
minimum of the original optimization problem. Since the proper-
ties of the filled function guarantee that the current local mini-
mum of the filled function is neither in the current basin nor in 
any higher basins of the original optimization problem, the cur-
rent local minimum of the filled function is in a lower basin of 
the original optimization problem. As a result, by finding the next 
local minimum of the original optimization problem via search-
ing the neighborhood around the current local minimum of the 
filled function, a better local minimum of the original optimiza-
tion problem can be obtained. By repeating these procedures, if 
the original optimization problem contains a finite number of lo-
cal minima, then the global minimum of the original optimization 
problem will be eventually reached. Since the globally optimal so-
lution of the optimization problem is found, a better performance 
can be achieved.

The outline of this paper is as follows. The theoretical prin-
ciples underpinning this paper are reviewed in Section 2. Sec-
tion 3 presents the formulation of the design problem and the 
method for finding the globally optimal solution of the noncon-
vex optimization problem. Computer numerical simulation results 
are represented in Section 4. Finally, a conclusion is drawn in
Section 5.

2. Review on theoretical backgrounds

A review on the discrete fractional Fourier transform (FrFT), 
a theoretical background on applying two mask operations in two 
different predefined rotated axes of the TF plane as well as a modi-
fied filled function method for finding the globally optimal solution 
of a nonconvex optimization problem are presented in this section. 
In this paper, we assume that the discrete time signals are with fi-
nite lengths. Hence, vector and matrix notations can be employed 
for describing the mask operations.

2.1. Discrete FrFT

The FrFT is a generalization of the ordinary Fourier transform 
with an order parameter a. Mathematically, the ath order FrFT op-
erator is the ath power of the ordinary Fourier transform operator. 
The ath order FrFT is a linear and unitary transform which trans-
forms the signal x(t) in the time axis of the TF plane to the signal 
in a rotated axis of the TF plane. The transform is defined as fol-
lows [3]:

F a[x(t)
] = xa(ta) =

∫
Ba(ta, t)x(t)dt, (1)

where

Ba(ta, t) = Cφ exp

{
jπ

(
−2

tat

sinφ
+ (t2

a + t2) cotφ

)}
(2)

and Cφ = exp{− j[(π sgn(φ))/4−φ/2]}√| sin φ| . Here, φ = aπ/2 with a being a 
real number in the interval 0 < |a| < 2. For a = 1, the FrFT is equiv-
alent to the conventional Fourier transform.

For the FrFT, its eigen functions are the Hermite Gaussian func-
tions ψn(t) [3]. That is,

F a[ψn(t)
] = e− janπ/2ψn(ta), (3)

where ψn(t) is defined as follows:

ψn(t) = 21/4

√
2nn! Hn(

√
2πt)e−πt2

. (4)

Here, Hn(t) is the nth order Hermite polynomial defined as 
Hn(t) = (−1)net2 dn

dtn (e−t2
). Since the nth order Hermite Gaussian 

functions can form a complete and orthonormal set of the signals 
in the L2 space, they are widely used in many engineering appli-
cations.

In the discrete case, the discrete fractional Fourier transform 
operator is represented by matrices. The matrix representing the 
discrete FrFT corresponding to the FrFT with the order a is denoted 
as Fa . The element in the mth row and the nth column of Fa for 
m = 0, . . . , N − 1 and for n = 0, . . . , N − 1 is defined as [7]:

Fa[m,n] =
N∑

k=0
k �=(N−1+mod(N,2))

uk[m]e− j π
2 kauk[n]. (5)

Here, uk[n] denotes the kth discrete Hermite Gaussian function. 
Also, N is the length of the signal. When a = 1, Fa becomes the 
discrete Fourier transform (DFT) matrix. The discrete FrFT has the 
similar properties of the DFT such as:

i. linearity, that is, Fa (x + y) = Fa (x) + Fa (y);
ii. unitarity, that is, FH

a = F−1
a , where FH

a is the conjugate trans-
pose of Fa;

iii. index additivity, that is, FaFb = Fa+b .

2.2. Applying two mask operations in two different predefined rotated 
axes of the TF plane

In TF representations, the TF domain is a set consisting of the 
ordered pairs of time and frequency. It is graphically represented 
by a plane with the x axis being the time axis and the y axis being 
the frequency axis. The Fourier transform is to represent signals in 
the y axis of the TF plane. Here, the y axis is the axis obtained by 
rotating the time axis of the TF plane by 90◦ . On the other hand, a 
FrFT [1] is to represent signals in a rotated axis of the TF plane, in 
which the axis is obtained by rotating the time axis of the TF plane 
by a certain angle. By applying a single mask operation in a single 
rotated axis in the TF plane, useful signal components can be ex-
tracted out. When the rotational angle is 90◦ , the FrFT becomes the 
conventional Fourier transform. Since filtering is to apply a mask 
operation in the y axis of the TF plane, this mask operation be-
comes the conventional filtering. From here, we can see that the 
FrFT is a generalization of the conventional Fourier transform and 
applying a mask operation in the rotated axis of the TF plane is a 
generalization of filtering in the frequency domain. Let y and z be 
the signals represented in the time domain and in the FrFT domain 
with the order a, respectively. That is, z = Fay. Then, a mask op-
eration is applied to z in the FrFT domain. Let the vector of mask 
coefficients be g and the signal after applying the mask operation 
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