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This paper extends the recent signal analysis method based on the spectral analysis of the semi-classical 
Schrödinger operator to two dimensions. An algorithm based on the tensor product approach when 
writing the eigenfunctions of the semi-classical Schrödinger operator is proposed. The algorithm is 
described and the effect of some parameters on the convergence of this method are numerically studied. 
The performance of the algorithm is illustrated through some examples.
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1. Introduction

In signal processing, it is more common to decompose a given 
signal into an appropriate set of functions which are indepen-
dent of the signal itself. However, for some applications, signal-
dependent functions are more suitable to highlight some specific 
features of the signal [14]. One approach to obtain such signal-
dependent functions is to consider those computed from the eigen-
functions of operators which depend on the signal. The Semi-
Classical Signal Analysis (SCSA) method belongs to the class of 
these techniques. It has been proposed by Laleg et al. in [14] and 
[10]. The main idea of this new method consists in considering 
the input signal as a potential of the semi-classical Schrödinger 
operator and then decomposing this potential using the squared 
L2-normalized eigenfunctions associated to the discrete spectrum 
of this operator. These functions are spatially shifted and localized. 
Thanks to their interesting properties [10,14,20], the SCSA method 
has proved its performance in several applications. For instance, 
interesting results have been obtained in the analysis of arterial 
blood pressure signals [14,16,17] and the analysis of the perfor-
mance of turbo-machinery [9]. Moreover, it has been shown in 
[18], that the SCSA method can cope with noisy signals, making 
this method a potential tool for denoising, for concrete exam-
ple, the filtering property of the SCSA method is currently under 
study through in-vivo experiments with Magnetic Resonance Spec-
troscopy data [15].
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As described in [14], the 1D version of the SCSA method has 
some modeling motivations related to solitons, solution of Ko-
rteweg–de-Vries (KdV) equation which have been used to model 
the arterial blood pressure waves. Indeed, solving the KdV equation 
uses the direct and inverse scattering transforms which consist in 
considering the solution of the KdV as potential of the Schrödinger 
operator [2]. Even if the method was first designed for the ar-
terial blood pressure signals, it has been shown that it works 
for a broader class of signals where the idea consists in consid-
ering the signal as a multiplication operator which perturbs the 
semi-classical Laplacian operator which leads to the semi-classical 
Schrödinger operator. The semi-classical parameter plays the role 
of a zoom on the signal, where decreasing this parameter helps to 
reconstruct the details of the signal. A possible way to interpret 
the method and to give some intuitions on it, is the following. The 
inverse problem community has well studied the inverse problem 
of reconstructing the potential of the Schrödinger operator from its 
spectral data and an analytical formula linking this potential to the 
spectral data has been proposed in [5]. However the formula can 
not be used in its form since it includes terms that depend on the 
continuous spectrum, which is difficult to compute numerically. In 
[14], it has been shown that the introduction of the semi-classical 
parameter in the Schrödinger operator can reduce significantly the 
effect of the continuous spectrum which justifies the use of the 
semi-classical analysis in the proposed approach and which also 
explains the zoom role of the semi-classical parameter.

In this paper, the SCSA method was extended to two dimen-
sions (2D) to be used in image representation. The reconstruction 
formula is first derived for the 2D case thanks to some con-
cepts from the semi-classical analysis of the Schrödinger opera-
tor [11,13]. Then an efficient algorithm is proposed where the 
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two dimensional (2D) semi-classical Schrödinger operator is splited 
into two one dimensional (1D) operators and then the squared 
L2-normalized eigenfunctions of these 1D operators are combined 
using a tensor product approach [8,12].

This paper is organized as follows. In Section 2, the basic prop-
erties of the SCSA are recalled. Then, in Section 3, the extension 
of the SCSA formula to 2D is proposed. In Section 4, an algo-
rithm for image representation, based on the spectral problems of 
1D Schrödinger operators is introduced. The analysis of some pa-
rameters and the use of this algorithm in image representation is 
illustrated in Section 5, followed by a comparison with algorithms 
from state-of-the-art image representation methods [4,23]. The last 
Section summarizes and discusses the obtained results.

2. Preliminary (SCSA in 1D case)

In this section, we recall the definition of the SCSA method [10,
14]. Let us consider the following 1D operator, known as the semi-
classical Schrödinger operator:

H1,h(V 1)ψ = −h2 d2ψ

dx2
− V 1ψ, ψ ∈ H2(R) (1)

where h ∈R
∗+ is the semi-classical parameter [6], and V 1 is a posi-

tive real valued function belonging to C∞(�1) where �1 =]a, b[ is 
a bounded open interval. Here H2(R) denotes the Sobolev space of 
order 2. The potential V 1 can be represented using the following 
proposition.

Proposition 2.1. (See [10].) Let V 1 ∈ C∞(�1) be a positive real valued 
function, and �1 ⊂ �1 is compact. Then, V 1 can be reconstructed in �1
using the following expression:

V 1,h,γ ,λ(x) = −λ +
⎛
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where h ∈R
∗+ , γ ∈R+ , λ ∈R− , and Lcl

1,γ is the suitable universal semi-
classical constant given by:
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,

� refers to the standard Gamma function. μk,h are the negative eigen-
values of H1,h(V 1) with μ1,h < · · · < μK λ

h ,h < λ, K λ
h is a finite num-

ber of negative eigenvalues smaller than λ, and ψk,h are the associated 
L2-normalized eigenfunctions such that,

H1,h(V 1)ψk,h = μk,hψk,h, k = 1, · · · , K λ
h .

The influence of the parameters λ, γ and h has been studied 
in [10] where it has been shown that the semi-classical parameter 
h plays a key role in this method. Indeed, when h goes to 0, the 
analysis of the Schrödinger operator (1) is usually related to the 
semi-classical analysis [6], which justifies the name Semi-Classical 
Signal Analysis (SCSA) for this signal analysis method [10,14].

3. Extension of the SCSA method to two-dimension

We consider the following 2D semi-classical Schrödinger oper-
ator associated to a potential V 2:

H2,h(V 2) = −h2	 − V 2, (3)

where 	 = ∂2

∂x2 + ∂2

∂ y2 is the 2D Laplacian operator, h ∈ R
∗+ is the 

semi-classical parameter [6], and V 2 is a positive real valued func-
tion belonging to C∞(�2) where �2 =]a, b[×]c, d[ is a bounded 
open set of R2.

Then, inspired form the semi-classical properties of the Schrö-
dinger operator [11,13], the extension of the SCSA formula in 2D 
case is given by the following theorem.

Theorem 3.1. Let V 2 be a positive real valued C∞ function on �2 con-
sidered as potential of the Schrödinger operator (3). Then, for any pair 
(�2, λ) such that �2 ⊂ �2 is compact and⎧⎨
⎩

λ < inf(−V 2(a, c),−V 2(b,d)) ,

V 2(�2) ⊂] − λ,+∞[ ,
λ is not a critical value of − V 2 , (for more details see [11])

(4)

and, uniformly for (x, y) ∈ �2 , we have

V 2(x, y) = −λ + lim
h→0
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where γ ∈ R
∗+ , Lcl

2,γ is the suitable universal semi-classical constant 
given by:

Lcl
2,γ = 1

22π

�(γ + 1)

�(γ + 2)
, (6)

� refers to the standard Gamma function.
Moreover, μk,h and ψk,h denote the negative eigenvalues with 

μ1,h < · · · < μK λ
h ,h < λ, K λ

h is a finite number of negative eigenval-

ues smaller than λ, and associated L2-normalized eigenfunctions of the 
operator H2,h (V 2) such that:

H2,h(V 2)ψk,h = μk,h ψk,h, k = 1, · · · , K λ
h (7)

The proof of this result is obtained using the generalization of 
Theorem 4.1, proposed by Helffer and Laleg in [10], to 2D case, 
which uses an extension of Karadzhov’s theorem on the spectral 
function [13], together with the connection of the Riesz means 
with Lieb-Thirring conjecture proposed by Helffer and Robert in 
[11]. Details of the proof are provided in Appendix A.

4. A novel algorithm for image representation

In image processing, for some geometrical and topological rea-
sons, it is common and more practical to consider a separation of 
variables approach to extend the 1D transforms to 2D [8,12]. This 
is the case for example with the 2D Fourier transform, which can 
be written using the tensor product of the 1D complex exponential 
[19] or more recently the Ridgelet transform [7] based on the ten-
sor product of 1D wavelet transform. The separation of variables 
principle allows the design of efficient and fast algorithms where 
the representation of the image is done row by row and column 
by column.

The reconstruction of an image using formula (5) requires the 
computation of eigenvalues and eigenfunctions which is known to 
be complex, especially in 2D. Therefore for the sake of simplicity, 
we propose, in this section, to use the separation of variables prin-
ciple by splitting the 2D operator into two 1D operators and to 
solve the eigenvalues problem for these 1D operators.

4.1. Principle

Let us define, for (x0, y0) ∈ �2 the following 1D operators, the 
same value of h is taken for both operators.
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