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Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and 
non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD 
drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we 
present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike 
previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm 
can be easily implemented. By making no explicit use of envelopes to find the local mean, possible 
inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. 
Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and 
comparisons with other optimization-based approaches to EMD are made, showing advantages for our 
proposal both in recovering known components and computational times. A voice signal is decomposed 
by our method evidencing some advantages in comparison with traditional EMD and noise-assisted 
versions. The new method here introduced catches most flavors of the original EMD but with a more 
solid mathematical framework, which could lead to explore analytical properties of this technique.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Empirical Mode Decomposition (EMD) [1] is an adaptive
method introduced to analyze non-linear and non-stationary sig-
nals. It consists in a local and fully data-driven separation of a 
signal in fast and slow oscillations. At the end of the decomposi-
tion, the original signal can be expressed as a sum of amplitude 
and frequency modulated (AM–FM) functions called intrinsic mode 
functions (IMFs) plus a final trend either monotonic or constant. 
However, EMD experiences some problems, such as the presence of 
oscillations of very disparate amplitude in a mode, or the presence 
of very similar oscillations in different modes, named as mode mix-
ing (an interesting strategy to alleviate noise-related mode mixing 
can be found in [2]). Besides this issue, one of its major draw-
backs is the lack of mathematical framework, being defined as an 
algorithm output.
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Several efforts have been made in order to provide some math-
ematical foundations for EMD. Deléchelle et al. [3] estimated the 
envelopes by solving a parabolic differential equation. Xu et al. [4]
modified the envelope definition to obtain one with a simple an-
alytical expression, by which the variations of the extrema in the 
iterative procedure are investigated in detail to reveal the nature of 
the sifting process. Hawley et al. [5] replaced the cubic spline in-
terpolations for trigonometric interpolations when estimating the 
envelopes. Thanks to that, they derive some interesting properties 
and convergence guarantees, although the results significantly dif-
fer from those of classical EMD. Daubechies et al. [6,7] compared 
EMD with wavelet theory by using a special case of reassignment 
called synchrosqueezing.

A different approach, based on optimization theory, has recently 
aroused the interest of the EMD scientific community. B. Huang 
and Kunoth [8] replaced the explicit interpolation through extrema 
for solving an optimization problem to estimate the envelopes. 
However, they keep an envelope-related approach. No explicit en-
velope is estimated by Oberlin et al. in [9]. They search for a 
local mean in a specific B-spline space subject to some symme-
try constraints on the amplitude of the modes. In a similar way, 
Pustelnik et al. [10,11] minimized the difference between a signal 
and its local mean plus mode subject to smoothness, symmetry 
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and quasiorthogonality requirements, based on a multicomponent 
variational analysis.

In this paper, we propose a new approach for EMD based on 
optimization, with the goal of mimic EMD. Unlike those above 
mentioned, here we present an unconstrained optimization prob-
lem, with a unique analytic solution. This results in the following 
benefits:

• This approach may help to better understand some properties 
of EMD.

• The explicit computation of envelopes to find the local mean 
is not needed, in contrast to algorithm-based EMD.

• The proposed method provides an analytical and easily im-
plemented closed solution, unlike previous optimization-based 
efforts that need iterative algorithms to solve the optimization 
problem.

• The use of explicit spline interpolations is avoided.
• The number of parameters to be tuned has been reduced to 

only one, in contrast to other optimization-based proposals 
where several parameters are needed.

• The computational cost is similar to the cost of EMD. On the 
contrary, other optimization-based methods are tens of times 
slower than EMD.

The paper is organized as follows. We recall the basic principles 
of EMD in Section 2. In Section 3 we present our new uncon-
strained optimization approach to EMD. Experiments and results 
with both artificial and real signals are introduced and discussed 
in Section 5. Conclusions are presented in Section 6.

2. Empirical mode decomposition

The main idea on EMD is to iteratively subtract the local mean 
from a signal (or residue) to obtain the zero local mean AM–FM 
components called intrinsic mode functions or simply modes. From 
this perspective, the slow oscillation is considered the local mean 
(trend) while the mode is the fast one. If x is the signal to be de-
composed, the EMD algorithm can be summarized as follows [1]:

1. Set k = 0 and find all extrema of r0 = x.
2. Interpolate between minima (maxima) of rk to obtain the 

lower (upper) envelope emin (emax).
3. Compute the mean envelope m = (emin + emax)/2.
4. Compute the IMF candidate dk+1 = rk − m.
5. Is dk+1 an IMF?

• Yes. Save dk+1, compute the residue rk+1 = x − ∑k+1
i=1 di , k =

k + 1, and treat rk as input data in step 2.
• No. Treat dk+1 as input data in step 2.

6. Continue until the final residue rK satisfies some predefined 
stopping criterion.

At the end, the signal x can be expressed as

x =
K∑

i=1

dk + rK , (1)

where each mode dk admits well-behaved Hilbert transforms. The 
refinement process carried out to ensure that the mode dk is ac-
tually an IMF is the so-called sifting process. Further details can be 
found in [1].

The symmetry of the modes’ envelopes resides on the IMF def-
inition. To be considered an IMF, a function must fulfill two con-
ditions: (i) the number of extrema and zero crossings are equal or 
differ at most by one; and (ii) the mean between the upper and 
lower envelope is zero for all the signal duration.

Some of the main characteristics of the EMD are its multiscale 
and local nature. The local scale is defined as the interval be-
tween successive extrema. The number of extrema of the modes 
decreases as k increases. Although one may give “spectral” inter-
pretation of the modes, it must be emphasized that this applies 
only locally. The automatic selection of the local highest frequency 
content cannot be achieved by a predetermined subband filtering; 
it rather corresponds to an adaptive (data-dependent) time-variant 
filtering [12]. When decomposing fractional Gaussian noise (fGn), 
EMD acts on average as a dyadic filter bank [12,13].

3. EMD as an unconstrained non-linear convex optimization 
problem

Notice that, in the original EMD algorithm, the local mean is 
defined as the mean of the envelopes, which are obtained by 
interpolating through local extrema (usually with cubic splines). 
Therefore, from the second mode onwards, all of them are sums of 
splines. We must get rid of the envelopes, so we propose here a 
different approach to obtain the local mean. Previous efforts have 
focused their attention on the smoothness of the local mean [14]
(even restricting their search to a spline subspace [9]). In those ap-
proaches, the IMF-likeness of the modes is not considered on the 
objective function but in the form of inequality constraints, where 
the corresponding bounds have to be set. However, the IMF con-
ditions are the heart of EMD and the sifting process is carried out 
until the mode is close enough to an IMF, so the original signal is 
the sum of IMFs plus a final trend. For this reason, our proposal 
focuses on the IMF-likeness of the modes.

Let us return to the IMF definition in Section 2. It is clear that 
condition (ii) cannot be satisfied without fulfilling condition (i), so 
it is enough to pursuit condition (ii). We consider this issue in a 
similar fashion to Oberlin et al. [9] and Pustelnik et al. [10]. Let 
tk[l], 1 ≤ l ≤ L, with L the number of local extrema, be the loca-
tions of the local extrema of the signal (or residue) under study. 
If we consider these points as estimations of the local extrema lo-
cations of the k-th mode (dk), for 2 ≤ l ≤ L − 1, we can define the 
inner product

pk
tk[l] dk = dk(tk[l]) + dk(tk[l + 1])�−

l + dk(tk[l − 1])�+
l

�+
l + �−

l

, (2)

where �+
l = tk[l + 1] − tk[l], �−

l = tk[l] − tk[l − 1], dk is a column 
vector and pk

tk[l] is the tk[l]-th row of a matrix Pk . Then, the only 
non-zero elements of the tk[l]-th row of Pk are

Pk(tk[l], tk[l]) = 1, (3a)

Pk(tk[l], tk[l − 1]) = �+
l

�+
l + �−

l

, (3b)

Pk(tk[l], tk[l + 1]) = �−
l

�+
l + �−

l

. (3c)

It should be emphasized the fact that matrix P k has as many rows 
as the length of dk . Rows not involved in (2) are zeros, because 
there are no local extrema at that positions. The goal of (2) is to 
compare the signal (or residue) at each extrema with the corre-
sponding linear interpolation between its two adjacent extrema. 
Smaller values of (2) would mean that dk locally (around tk[l]) bet-
ter satisfies the IMF condition (ii). The minimization of ||P kdk||2
would contribute, at least globally, to the fulfillment of the IMF 
conditions. As it was pointed out by Pustelnik et al., matrix P is a 
“...linear operator which models the penalization imposed on d at each 
location tk[l]” [10]. It must be noticed that, in this approach, the 
IMF conditions are not evaluated over the whole time span of the 
signal but only on its local extrema.



Download English Version:

https://daneshyari.com/en/article/558725

Download Persian Version:

https://daneshyari.com/article/558725

Daneshyari.com

https://daneshyari.com/en/article/558725
https://daneshyari.com/article/558725
https://daneshyari.com

