
Digital Signal Processing 40 (2015) 181–197

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Localization of multiple disjoint sources with prior knowledge on 

source locations in the presence of sensor location errors

Jinzhou Li a,∗, Hongwei Pang c, Fucheng Guo b, Le Yang b,d, Wenli Jiang b

a Beijing Institute of Remote Sensing Information, Haidian, Beijing, 100192, China
b School of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
c 95806 PLA troops, China
d School of Internet of Things (IoT) Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 18 February 2015

Keywords:
Multiple disjoint source localization
Gaussian-distributed prior source locations
Time difference of arrival (TDOA)
Frequency difference of arrival (FDOA)
Cramér–Rao lower bound (CRLB)

Sensor location errors are known to be able to degrade the source localization accuracy significantly. 
This paper considers the problem of localizing multiple disjoint sources where prior knowledge on the 
source locations is available to mitigate the effect of sensor location uncertainty. The error in the priorly 
known source location is assumed to follow a zero-mean Gaussian distribution. When a source location 
is completely unknown, the covariance matrix of its prior location would go to infinity. The localization 
of multiple disjoint sources is achieved through exploring the time difference of arrival (TDOA) and the 
frequency difference of arrival (FDOA) measurements. In this work, we derive the Cramér–Rao lower 
bound (CRLB) of the source location estimates. The CRLB is shown analytically to be able to unify several 
CRLBs introduced in literature. We next compare the localization performance when multiple source 
locations are determined jointly and individually. In the presence of sensor location errors, the superiority 
of joint localization of multiple sources in terms of greatly improved localization accuracy is established. 
Two methods for localizing multiple disjoint sources are proposed, one for the case where only some 
sources have prior location information and the other for the scenario where all sources have prior 
location information. Both algorithms can reach the CRLB accuracy when sensor location errors are small. 
Simulations corroborate the theoretical developments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Determining the source positions from source signal measure-
ments obtained by an array of sensors at a time instance is a 
classic problem. It has found many applications in radar, sonar, 
search and rescue. It is of practical importance especially for the 
scenario where only a single set of source signal measurements is 
available for the localization task, due to e.g., the small duty cycle 
of the sources.

Source localization is a non-trivial problem, mainly because 
the source positions and the signal measurements are gener-
ally nonlinearly related. Over the past few decades, a number 
of localization algorithms have become available in literature. 
To name a few, they include the iterative Taylor-series method 
[1,2], the two-step least-squares (TSLS) method [3–5], the linear-
correction least-squares (LCLS) method [6] and other closed-form 
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techniques (see [7–12] and references therein). Recently, the use 
of the Laplacian mixture model in speaker localization was inves-
tigated in [13]. Dehkordi et al. [14] explored the spatial sparsity 
of the source localization problem and developed a compressive 
sensing (CS) based localization technique. Wei et al. [15] intro-
duced a multidimensional scaling (MDS)-based approach for source 
localization. The MDS method was shown to be more robust to 
large noise levels but it cannot attain the Cramér–Rao lower bound 
(CRLB) accuracy when the noise level is small. The localization al-
gorithms mentioned above all assume that the sensor locations 
known for the source localization task are accurate, which may 
not hold in practice. In [16], Ho et al. proposed a localization 
method that takes the sensor location errors into account to im-
prove performance. Although the new solution can reach the CRLB 
approximately, the obtained localization accuracy is quite worse 
than that of the case where the sensor locations are known pre-
cisely.

In order to mitigate the effect of sensor location errors on the 
accuracy of locating a source from time difference of arrival (TDOA) 
measurements, Ho and Yang [17] considered using a single cali-
bration emitter. They showed via CRLB analysis that the use of a 
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calibration emitter at accurately known position can significantly 
improve the source localization performance. An approximately ef-
ficient closed-form method that can explore the TDOAs from both 
the unknown source and the calibration emitter was also devel-
oped. Yang and Ho [18] later extended their work in [17] to a 
more realistic situation where there exist more than one calibra-
tion emitters and their positions are subject to errors as well. 
Recently, the study in [18] was further generalized in [19], where 
the use of calibration sensors for reducing the impact of sensor 
location errors was investigated.

When the calibration emitters in the source localization sce-
nario considered in [18] are at completely unknown positions, the 
calibration emitter positions need to be determined together with 
the source position. This leads to the problem of locating multi-
ple disjoint sources. The disjointness could come from time, fre-
quency or both [12] so that the signal measurements from every 
source can be obtained separately. This eliminates the data asso-
ciation procedure [20–22] usually required in non-disjoint source 
localization. In [23], an approximately efficient technique has been 
developed for locating multiple disjoint sources using TDOAs in 
the presence of sensor position errors. When the received source 
signal strength is also available, the gain ratio of arrival (GROA) 
can be explored together with TDOAs to accomplish multiple dis-
joint source localization [24,25]. In the case where the source and 
the sensors are moving, [26] developed a closed-form algorithm 
for estimating the positions and the velocities of multiple dis-
joint sources from TDOA and frequency difference of arrival (FDOA) 
measurements obtained by sensors whose positions and velocities 
are known imprecisely. Iterative methods are also available for the 
multiple disjoint localization task (see [27] for an example). They 
utilized numerical techniques such as the Taylor-series method to 
solve the maximum likelihood (ML) estimation problem that is 
nonlinear with respect to the source locations. The iterative meth-
ods may suffer from local convergence or even divergence if their 
initial solution guesses are far from the true source locations.

In this paper, we consider the problem of locating multiple 
disjoint sources from the source TDOA and FDOA measurements 
when the sensor locations are subject to random errors. Different 
from [26], this work assumes that a noisy version of the source 
locations is available and they are referred to as prior source lo-
cations. The deviation of the prior source locations from their true 
values is assumed to be Gaussian distributed. The above localiza-
tion setup includes three application scenarios as special cases. 
First, when the covariance matrices of the prior source locations 
are infinitely large, i.e., all source locations are completely un-
known, the considered localization problem reduces to the one 
studied in [26]. Second, when only some sources are at com-
pletely unknown locations (i.e., their prior locations have infinitely 
large covariance matrices while others have finite covariance ma-
trices), the problem becomes multiple disjoint source localization 
with calibration emitters at imprecisely known locations. This can 
be considered as a generalization of the problem studied in [18]. 
More specifically, we shall investigate the localization of multiple 
disjoint sources using TDOAs and FDOAs, compared to [18] where 
the TDOA-positioning of a single source was considered. This prob-
lem has not been examined carefully in literature except for [28]
where some preliminary results were presented. In the third case, 
all prior source locations have finite covariance matrices. The prior 
source location information can be explored together with the 
TDOA and FDOA measurements to provide improved source local-
ization accuracy.

The main contributions of this paper are:

(1) The CRLB of localizing multiple disjoint sources is derived for 
the scenario where sensor location errors and prior source 
locations are present. We demonstrate, via manipulating the 

covariance matrices of the prior source locations, that several 
localization CRLBs in literature can be deduced from the newly 
obtained CRLB. This indicates that the localization problem in-
vestigated in this work is more general and the difference 
among the previously studied localization scenarios mainly lies 
in the availability of the prior source location information.

(2) On the basis of the newly derived localization CRLB, we con-
duct a theoretical study that compares the localization accu-
racy when multiple sources are localized jointly and individu-
ally. It is found that when sensor location errors are present, 
joint source localization outperforms locating the sources sep-
arately in terms of significantly improved localization accu-
racy. On the other hand, in the absence of sensor location 
errors, locating multiple disjoint sources together and individ-
ually would yield the same performance.

(3) Two algorithms for localizing multiple disjoint sources are 
proposed. The first algorithm addresses the scenario where 
only some sources have prior location information. It is a 
generalization of the method developed in [18]. It uses the 
sources with prior location information as calibration emitters 
and localizes other sources at completely unknown locations. 
The second algorithm tackles the situation where all sources 
have prior location information. Both proposed techniques are 
shown to be able to achieve the CRLB under mild conditions.

The rest of the paper is organized as follows. Section 2 de-
scribes the localization scenario. Section 3 derives the source lo-
calization CRLB and performs the CRLB analysis. Section 4 presents 
the two methods for jointly estimating the locations of multi-
ple disjoint sources. Section 5 contains the simulation results. 
Section 6 concludes the paper. The following notations are used 
throughout the paper. Bold face upper case letter denotes matrix 
and bold face lower case letter represents vector. Besides, for a 
noisy quantity {·}, we shall denote its noise-free version (i.e., the 
true value) as {·}o and the random error in {·} as �{·} such that 
{·} = {·}o + �{·}.

2. Localization scenario

This paper considers the localization scenario depicted in Fig. 1. 
There are N moving sources whose positions and velocities are to 
be determined. Let uo

i = [uo
x,i, u

o
y,i, u

o
z,i]T and u̇o

i = [u̇o
x,i, ̇u

o
y,i, ̇u
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be the true position and the true velocity of source i, i = 1, 2, . . . N . 
We define θo

i = [uoT
i , ̇uoT

i ]T as the true location vector of source i. 
In this work, it is assumed that a noisy version of θo

i , denoted 
by θ i and referred to as the prior source location, is available. 
The deviation of θ i from θo

i , �θ i = θ i − θo
i , is modeled as a 

zero-mean Gaussian random vector with covariance matrix Qθ i . 
Note that when Qθ i goes to infinity, the above setting reduces 
to the scenario where the true location of source i is completely 
not known. We define the composite source location vector as 
θo = [θoT

1 , θoT
2 , . . . , θoT

N ]T . Mathematically, we have θ = θo + �θ , 
where θ = [θ T

1 , θ T
2 , . . . , θ T

N ]T and �θ = [�θ T
1 , �θ T

2 , . . . , �θ T
N ]T . It 

is assumed that �θ i are independent to one another such that the 
covariance matrix of �θ is Qθ = diag{Qθ1 , Qθ2 , . . . , Qθ N }.

There are M mobile sensors. Their true positions and veloci-
ties are collected in so = [soT

1 , soT
2 , . . . , soT

M ]T and ṡo = [ṡoT
1 , ̇soT

2 , . . . ,
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M ]T , where so
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true position and the true velocity of sensor j, j = 1, 2, . . . , M . 
Both so and ṡo are not known and only their noisy values s =
[sT

1 , sT
2 , . . . , sT

M ]T and ṡ = [ṡT
1 , ̇sT

2 , . . . , ̇sT
M ]T are available. The sen-

sor position error and the sensor velocity error are denoted by 
�s = [�sT

1 , �sT
2 , . . . , �sT

M ]T and �ṡ = [�ṡT
1 , �ṡT

2 , . . . , �ṡT
M ]T such 

that s = so + �s and ṡ = ṡo + �ṡ. Define the sensor location vector 
as
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