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Signal decompositions such as wavelet and Gabor transforms have successfully been applied in denoising 
problems. Empirical mode decomposition (EMD) is a recently proposed method to analyze non-linear and 
non-stationary time series and may be used for noise elimination. Similar to other decomposition based 
denoising approaches, EMD based denoising requires a reliable threshold to determine which oscillations 
called intrinsic mode functions (IMFs) are noise components or noise free signal components. Here, 
we propose a metric based on detrended fluctuation analysis (DFA) to define a robust threshold. The 
scaling exponent of DFA is an indicator of statistical self-affinity. In our study, it is used to determine 
a threshold region to eliminate the noisy IMFs. The proposed DFA threshold and denoising by DFA–EMD 
are tested on different synthetic and real signals at various signal to noise ratios (SNR). The results are 
promising especially at 0 dB when signal is corrupted by white Gaussian noise (WGN). The proposed 
method outperforms soft and hard wavelet threshold method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The empirical mode decomposition (EMD) is an alternative 
method to analyze non-linear and non-stationary signals [1]. EMD 
breaks signal down into a finite number of amplitude and fre-
quency modulated (AM/FM) zero-mean oscillations called intrinsic 
mode functions (IMFs). In contrast to wavelet decomposition, IMFs 
are expressed as the signal dependent semi-orthogonal basis func-
tions via an iterative algorithm called sifting. However, they have 
fluctant frequency spectrum caused by mode-mixing effect. There 
are several attempts to reduce fluctuation or express an IMF with 
a single component [2]. On the other hand, it is another challeng-
ing study to explain the meaning of each IMF or determine which 
IMF refers to noisy oscillations, which is the generalized task of the 
EMD based denoising. While noisy IMFs may be determined man-
ually observing the periodicity of the oscillations in the required 
range [3], some automated methods have been studied. Wu and 
Huang [4] deployed a hypothesis test method to find out the rel-
evant information level of the IMFs, which is reported to perform 
poorly for low frequency oscillations. Information theoretical based 
approaches such as mutual information and relative entropy are 
applied to find noisy oscillations [5,6]. In addition to these time-
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domain characteristics of IMFs, frequency domain characteristics of 
the EMD is investigated and modeled as a dyadic filter bank result-
ing from the decomposition of white Gaussian noise (WGN ) [7] or 
fractional Gaussian noise (fGn) [8,9]. From this point of view, if the 
energy distribution of IMFs for noise-only signal is known, the dis-
crepancy between energy of noisy-signal IMFs and noise-only IMFs 
indicates the presence of the relevant informative oscillations.

Our suggestion is to determine noisy IMF resulting from the 
decomposition of noisy-signal using a reliable metric. Detrended 
fluctuation analysis (DFA) [10] is a successful method to measure 
long-range dependency for non-stationary time series [11,12]. The 
special cases α = 0.5, α = 1 and α = 1.5 correspond to completely 
uncorrelated white noise, pink noise and Brownian noise. When 
0 < α < 0.5, the signal is called “anti-correlated”, in which large 
fluctuations are likely to be followed by small ones. While it in-
creases from 0.5 to 1, temporal correlations are persistent. If α > 1, 
the correlations do not exhibit power-law behavior [13]. The slope, 
α can also be considered as an indicator of roughness [14]: the 
larger the value, the smoother time series or slower fluctuations. 
From this point of view, DFA can be used as a robust metric to 
identify noisy IMFs. The proposed method is to determine noisy 
IMFs resulting from the decomposition of noisy-signal using a re-
liable metric which is independent of a comparison or referencing 
with the signal. The IMFs are tested by DFA to measure their statis-
tical properties, and the DFA based threshold is applied to exclude 
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IMFs which contain mostly noise. The suggested method is tested 
on synthetic and real EEG signals to show its denoising capability 
comparing to wavelet threshold methods.

The remainder of the paper is organized as follows: Section 2
provides a short description of EMD. Signal denoising and thresh-
olding are described in Section 3. Section 4 summarizes the DFA 
and explores its thresholding capability. The suggested DFA–EMD 
based denoising is presented in Section 5. Consequently, in Sec-
tion 6 simulation results of the DFA–EMD method are examined, 
and the conclusions are drawn in Section 7.

2. EMD: a brief description

The EMD has been introduced by Huang et al. [1] as a tool of 
data driven and adaptive multi-component signal decomposition 
method into intrinsic mode functions (IMFs) so that sum of them 
is equal to the original signal x(n). IMFs are required to satisfy two 
criteria [2]: First, the number of the extrema and the number of 
zero crossings must be equal or must differ by one at most. Sec-
ond, the mean of the upper and lower envelopes determined by 
the local maxima and minima should be zero. The most impor-
tant iterative process of an EMD algorithm is to extract IMFs called 
Sifting, which is composed of the following steps [15]:

(i) Find local maxima, Mi , i = 1, 2, . . . , and minima mk , k =
1, 2, . . . , in x(n).

(ii) Compute the interpolating signals M(n) = f M(Mi, n), and 
m(n) = fm(mk, n) using cubic spline, which are the upper and 
lower envelopes of the signal.

(iii) Compute mean of the envelopes, e(n) = [M(n) + m(n)]/2.
(iv) If e(n) satisfies the IMF requirements, save it as an IMF, and 

remove e(n) from the signal; x(n) = x(n) − e(n).
(v) Return to step (i) and stop when x(n) remains nearly un-

changed.
(vi) After obtaining an IMF, ϕi(n), remove IMF from the signal 

x(n) = x(n) − ϕi(n) and return to (i) if x(n) is not constant 
or trend, r(n).

Consequently, the original signal can be reconstructed by the sum 
of IMFs described as follows;

x(n) =
L∑

i=1

ϕi(n) + r(n) (1)

where L is the number of extracted IMFs. There are several EMD 
algorithms in which different sifting methods are deployed to en-
hance its capabilities. The first implementation of the EMD algo-
rithm deploys standard deviation (SD) based approach to guarantee 
that IMFs retain sufficient physical sense of amplitude and fre-
quency modulation is defined as

SD =
N∑

n=0

[ |e(k−1)(n) − e(k)(n)|2
e2
(k−1)

(n)

]
(2)

where k denotes the iteration number in the sifting algorithm. It 
was reported that SD should be chosen between 0.2 and 0.3 for 
meaningful results [1]. A recent EMD algorithm [15] used in this 
study suggests an alternative stopping criteria by predefined reso-
lutions;

qResol = 10 log

(
σ 2

x(n)

σ 2
e(n)

)
(3)

qResid = 10 log

(
σ 2

x(n)

σ 2
r(n)

)
(4)

where qResol and qResid are the ratios of signal to IMF and sig-
nal to residue energy, respectively. Thus, an oscillation may be 
assigned as an IMF, or residue, and it may increase the iteration 
number. There are some studies to enhance the sifting algorithm 
to eliminate the drawbacks caused by interpolation such as “end 
effect”, and “mode-mixing” [15–18]. Besides, the EMD is success-
fully applied to the problems such as denoising [8,9] instantaneous 
frequency [19], autoregressive parameter estimation [20], classifi-
cation [21], and audio coding [22].

3. Signal denoising

A common description of a denoising problem can be described 
as follows: A sampled noisy signal x(n) is obtained by

x(n) = x̄(n) + ση(n), t = 1,2, . . . , N (5)

where x̄(n) is the noise free signal and η(n) is Gaussian distributed 
N(0, 1) independent random variable with known or unknown 
noise variance σ . The goal is to recover an estimated version x̃(n)

of x̄(n) with small error. The performance criteria may be mean 
squared error (MSE), MSE = 1

N ‖x̃(n) − x̄(n)‖2
2 or signal to noise ra-

tio (SNR), SNR = 10 log(
σ 2

x̃

σ 2
η
).

The main principle of the wavelet denoising is to apply thresh-
old to the resultant coefficients in the orthogonal basis. Coefficients 
with higher amplitudes than threshold are assumed as the x̄(n)

related components. Because, total energy of the noiseless signal 
is represented by a few coefficients in the wavelet domain, and 
the others are assumed as noise components. There are two major 
threshold methods called hard and soft threshold defined as

ρT (c) =
{

c, |c| > θ

0, |c| ≤ θ
(6)

ρT (c) =
{

sgn(c) (|c| − θ), |c| > θ

0 |c| ≤ θ
(7)

respectively, where ρT (c) denotes the thresholded wavelet coeffi-
cients which are applied to inverse wavelet transform to recover 
noise free x̄(n), and the others lower than threshold are set to 
zero. The hard thresholding is the simplest way and sets all val-
ues to zero if below then the threshold. The soft threshold method 
also known as wavelet shrinkage, shrinks the coefficients with 
higher amplitude towards zero [23,24]. In addition to these thresh-
old methods, the other criterion affecting the denoising capability 
is the selection of the level of the threshold. Briefly, the univer-
sal threshold θ = σ̂

√
2 ln N is the most popular candidate. The 

standard deviation of the noise is estimated applying a robust es-
timator defined as [25].

σ̂ = median(|ci |: i = 1, . . . , N)

0.6745
(8)

Such a threshold computed based on noisy signal coefficients 
guarantees that components with lower amplitudes belong to the 
noise. Therefore, sufficient denoising performance is obtained in-
dependently from noise characteristics [26]. On the other hand, 
aforementioned methods such as threshold and its level depend on 
the estimation using the properties of the signal and noise. This is 
the reason of several attempts to fit more appropriate estimators. 
Moreover, a-priori basis and decomposition level selection make it 
a trial and error based method to obtain the best denoising per-
formance. Decomposition of a noisy signal by EMD reveals both 
noise and noise free IMFs. The goal is to determine a reliable met-
ric to discriminate the noise components and exclude them when 
reconstructing the signal. Fig. 1 summarizes the method in the 
EMD based denoising. A piecewise-regular signal with 10 dB SNR 
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