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Principal Component Analysis (PCA) is a simple non-parametric method for extracting relevant information 
from high-dimensional data sets. In this paper, we analyze the data collected from the Indian MST 
(Mesosphere, Stratosphere, Troposphere) radar at Gadanki (13.5◦N, 79.2◦E) using PCA. We tested the 
PCA for various simulated signals like narrowband, wideband and exponential signals which may contain 
more than one frequency both in absence and presence of noise. For the simulated data, it is observed 
that PCA works for low SNR, i.e. it successfully detects the frequency in the highly noise-corrupted signal 
also. Finally, we applied PCA to the radar data for estimating the power spectrum and thus in turn 
estimating the Doppler frequency components. We estimate the zonal (U), meridional (V), wind speed 
(W) etc. from the Doppler frequencies. Compared with existing algorithms, PCA works well at higher 
altitudes and results have been validated using the GPS sonde data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Indian MST radar provides information on wind data in the 
mesosphere, stratosphere and troposphere with a resolution of 
150 m starting above 3.5 km. The radar uses Doppler Beam Swing-
ing (DBS) method to determine the three wind components U, V 
and W [1]. The spectral data are collected by the radar using multi-
ple beam positions (east, west, zenith-X, zenith-Y, north and south) 
with 16 μs coded pulse and 1000 μs Inter Pulse Period (IPP). The 
complex time series of the decoded and integrated signal sam-
ples are subjected to the process of Fast Fourier Transform (FFT) 
for on-line computation of the Doppler power spectra for each 
bin of the selected range window. The off-line data processing in-
volves the following steps: the removal of dc, estimation of average 
noise level, the removal of interference, incoherent integration and 
computation of low-order (0th, 1st and 2nd) moments. The three 
moments are signal strength, weighted mean Doppler shift and 
half-width parameters of the spectrum respectively. Up to a certain 
height (≤18 km), this technique estimates the Doppler frequencies 
of the returned echoes accurately. At heights greater than 18 km, 
estimation fails. It is also observed that in many cases that when 
noise interferes with data at lower altitudes (3.5 km to 12 km), we 
get incorrect results. Several authors proposed various algorithms 
for denoising the spectrum, finding the Doppler frequencies from 
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the estimated spectrum and thus the U, V and W components. 
Bispectral-based estimation algorithm eliminates the noise [2]. But, 
this algorithm involves a complex mathematical computation. Mul-
titaper spectral estimation algorithm produces broadened spectral 
peak [3]. Wavelet-based denoising method has been applied for 
spectrum cleaning and thus estimating the Doppler frequencies 
and wind components [4]. The Cepstrum thresholding approach 
also has been applied to the radar data to estimate the frequencies 
[5]. These methods have an advantage of total variance reduction 
of the estimated spectrum. But, they fail at higher heights where 
SNR will be very low. Hence, there should be an algorithm which 
yields correct results at medium as well as higher altitudes and 
take an advantage of reduced variance. PCA is such method which 
reduces the complexity and gives us the good results.

The remainder of this paper is organized as follows. In Sec-
tion 2, the PCA concept and its properties for exponentials are 
explained. In Section 3, we showed the reduction in variance and 
mean square error (MSE) when PCA is applied to the simulated 
data and illustrate the detection of frequencies of one or more si-
nusoids in presence of high noise. We applied our approach to the 
MST radar data to estimate the Doppler shift in Section 4. Wind 
velocities are computed from the estimated Doppler shifts. In Sec-
tion 5, the concluding remarks are given.

2. Principal component analysis

PCA is a mathematical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated 
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variables into a set of values of uncorrelated variables called 
principal components (PCs). The main advantage of PCA is dimen-
sionality reduction. There are various spectrum estimation algo-
rithms to estimate the frequency. But, there will be certain cases 
where we need to estimate only the frequencies and amplitudes 
of the spectral components. There is no need to estimate the en-
tire spectrum. These are known as frequency estimation techniques 
and are applicable to a harmonic process that consists of a sum of 
sinusoids or complex signals. These methods may use the vectors 
that lie in noise subspace or signal subspace. The signal subspace 
methods form a low-rank approximation to the autocorrelation 
matrix which is then incorporated to a spectrum estimation al-
gorithm. PCA is one of such signal subspace methods.

The autocorrelation matrix (ACM) for the given set of data x(n)

consisting of p exponentials plus noise is a sum of autocorrelation 
matrices due to signal s and noise n [6]. Let the size of ACM be 
M × M . Thus,

Rx = Rs + Rn (1)

The Eigen decomposition of the ACM can be expressed as below 
assuming that the eigenvalues (λi ) are arranged in the descending 
order (λ1 ≥ λ2 ≥ . . . ≥ λM ),

Rx =
M∑

i=1

λiviv
H
i =

p∑
i=1

λiviv
H
i +

M∑
i=p+1

λiviv
H
i (2)

where vi is eigenvector corresponding to eigenvalue λi . The first 
term of (2) is due to signal alone and second term of (2) is due 
to noise alone. If we retain only the principal eigenvectors of (2), 
a reduced rank approximation is formed to the signal ACM. Thus,

R̂s =
p∑

i=1

λiviv
H
i (3)

Now, any spectral estimator can be used for the above approx-
imated ACM of (3). The noise part of (2) is eliminated and only 
signal part is retained. Thus, the estimation of spectral component 
due to signal is enhanced. The principal components representa-
tion of (2) imposes a rank-p constraint on Rx since it is assumed 
that the signal has p exponentials and also the rank of the ACM 
due to the signal is p.

The number of principal components is less than or equal to 
the number of original variables. The first principal component 
has high variance as it accounts for as much of the variability in 
the data as possible. The succeeding component in turn has the 
highest variance possible under the constraint that it has to be 
orthogonal to (uncorrelated with) the preceding components. Its 
operation can be thought of as revealing the internal structure of 
the data in a way which best explains the variance in the data. 
Fig. 1 shows the steps involved in PCA spectral estimate.

The PCA of the ACM may be used in conjunction with any 
of the spectrum estimation techniques and thus forming princi-
pal components spectrum estimate. The following are some of the 
methods used for this PC spectrum estimate.

1. Blackman–Tukey Frequency Estimation method (PCA-BT),
2. Minimum variance Frequency Estimation method (PCA-MV) 

and
3. AR Frequency Estimation method (PCA-AR).

In this paper, we implemented the first two methods. The equa-
tions of the PC version of the above first two methods are given by,

P̂PCA-BT
(
e jw) = 1

M
eH R̂se = 1

M

p∑
i=1

λi
∣∣eH vi

∣∣2
(4)

Fig. 1. Flowchart of the steps involved in PCA.

P̂PCA-MV
(
e jw) = M∑p

i=1
1
λi

|eH vi|2
(5)

where e is the vector of complex exponentials orthogonal to vi , 
i = 1, 2, . . . , p.

Selecting the number of PCs
Let R be the M × M covariance matrix obtained from the mean 

subtracted data vector, x(n). R can be expressed as,

V−1RV = D (6)

In (6), V is the matrix of eigenvectors that diagonalizes the covari-
ance matrix R and D is the diagonal matrix of eigenvalues of R. 
D is an M × M diagonal matrix, where

D[p,q] =
{

λm, p = q = m
0, p �= q

(7)

with λm being the mth eigen value and the elements of the diag-
onal matrix D are in descending order. The eigenvalues represent 
the distribution of source data’s energy among each of the eigen-
vectors. The cumulative energy content E of the mth eigenvector is 
the sum of the energy content across all of the eigenvalues from 1 
through m.

E[m] =
m∑

q=1

D[q,q], m = 1, . . . , M (8)

Save the first L columns of V as the M × L matrix W.

W[p,q] = V[p,q], p = 1, . . . , M, q = 1, . . . , L (9)

where 1 ≤ L ≤ M . The E[m] can be used as a guide in choosing an 
appropriate value of L. The value of L is as small as possible while 
achieving a reasonably high value of E on a percentage basis. For 
example, if we want to choose L so that the cumulative energy 
E[m] is above a certain threshold, like 90 percent. The smallest 
value of L is chosen such that,

E[m = L]∑M
q=1 D[q,q] ≥ 90% (10)

Thus, the number of PCs is selected.
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