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Channel distortion is one of the major factors which degrade the performances of automatic speech 
recognition (ASR) systems. Current compensation methods are generally based on the assumption that 
the channel distortion is a constant or slowly varying bias in an utterance or globally. However, this 
assumption is not sustained in a more complex circumstance, when the speech records being recognized 
are from many different unknown channels and have parts of the spectrum completely removed (e.g. 
band-limited speech). On the one hand, different channels may cause different distortions; on the other, 
the distortion caused by a given channel varies over the speech frames when parts of the speech 
spectrum are removed completely. As a result, the performance of the current methods is limited in 
complex environments. To solve this problem, we propose a unified framework in which the channel 
distortion is first divided into two subproblems, namely, spectrum missing and magnitude changing. Next, 
the two types of distortions are compensated with different techniques in two steps. In the first 
step, the speech bandwidth is detected for each utterance and the acoustic models are synthesized 
with clean models to compensate for spectrum missing. In the second step, the constant term of the 
distortion is estimated via the expectation-maximization (EM) algorithm and subtracted from the means 
of the synthesized model to further compensate for magnitude changing. Several databases are chosen 
to evaluate the proposed framework. The speech in these databases is recorded in different channels, 
including various microphones and band-limited channels. Moreover, to simulate more types of spectrum 
missing, various low-pass and band-pass filters are used to process the speech from the chosen databases. 
Although these databases and their filtered versions make the channel conditions more challenging 
for recognition, experimental results show that the proposed framework can substantially improve the 
performance of ASR systems in complex channel environments.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Although extensive research on automatic speech recognition 
(ASR) in adverse environments has been carried out for many 
years, it remains a challenge because of various possible types of 
environmental distortion. As one of the major factors that degrade 
the performance of ASR systems, channel distortion is inevitable. 
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Various conditions, such as different microphones and transmitting 
channels or encoders, can cause channel distortion. Within the last 
few decades, many approaches have been proposed to address this 
problem. These approaches can be broadly divided into two main 
categories: feature enhancement and model adaptation [1].

Feature enhancement attempts to extract features that are less 
sensitive to channel distortion. One class of feature enhancement 
is feature normalization; some examples are cepstral mean nor-
malization (CMN) [2], cepstral mean and variance normalization 
(CMVN) [3], and relative spectra (RASTA) [4]. These methods rely 
on the assumption that the channel distortion is present in the 
constant or slowly varying components of speech features. Hence, 
these methods normalize features by removing such components. 
CMN removes the mean vector from the features of an utterance; 
CMVN extends CMN by adjusting both the mean and variance of 
features; and RASTA designs a filter in the cepstral domain to re-
move the slowly varying components.
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Another class of feature enhancement methods aims to es-
timate pseudo-undistorted features from distorted speech. These 
methods operate in the log-spectrum or Mel-frequency cepstral 
coefficient (MFCC) domains, in which channel distortion is mod-
eled as an additive term. In addition, clean speech can be mod-
eled with a Gaussian, a Gaussian mixture model (GMM) or a 
hidden Markov model (HMM). The channel distortion is then es-
timated under a Bayesian framework, and the pseudo-undistorted 
features are obtained by subtracting the channel distortion from 
the distorted features [5]. When additive noise and channel dis-
tortions are present simultaneously, the relationship between the 
clean and distorted speech is highly nonlinear in the MFCC do-
main [6,23]. To solve this problem, the vector Taylor series (VTS) 
is introduced to linearize the distortion model. Next, the channel 
distortion is estimated with the expectation-maximization (EM) al-
gorithm [6,7]. In addition, the ETSI’s advanced frontend [8] adopts 
the least mean square (LMS) algorithm [9] to compensate for the 
channel distortion in the feature domain. Recently, a new feature 
named robust compressive gammachirp filterbank cepstral coeffi-
cient is proposed [10]. This feature is based on an asymmetric and 
level-dependent compressive gammachirp filterbank and a sigmoid 
shape weighting rule for the enhancement of speech spectra in the 
auditory domain.

Feature enhancement methods are attractive because they op-
erate in the frontend and can be easily implemented into an ASR 
system without modifying the recognizer. Moreover, these methods 
are typically simpler computationally, satisfying the demand of a 
real-time application. However, feature enhancement methods are 
shown to only achieve a medium-level distortion reduction [26], 
and errors in feature estimations can cause further mismatches be-
tween the features and the acoustic models, resulting in degraded 
performance [1].

On the contrary, model adaptation methods work in the back-
end to compensate by modifying or even retraining the acoustic 
models. The most straightforward method is to train models from 
the distorted speech, namely, matched training. This method pro-
vides an upper limit for the performance of an ASR system under 
a given condition, so it is often used for experimental comparison. 
However, it is impractical to use this method in real-life applica-
tions because it needs a large amount of distorted speech under 
each possible environment. Multi-style training [11] is designed 
to train models with different types of distorted speech, each of 
which would be reasonable to expect in deployment. When the 
likely running environments of the recognizer are included in the 
training data, this method can achieve good performance; other-
wise, the performance will be degraded. In the model domain, the 
widely adopted strategy is to adapt the models trained with clean 
speech to distorted environments.

When adaptation data from the new environment are available, 
speaker adaptation methods, such as the constrained maximum 
likelihood linear regression (CMLLR) [12], the maximum likelihood 
linear regression (MLLR) [13–15] and maximum a-posteriori (MAP) 
adaptation [16], can also be used for environment adaptation. 
These methods do not make any assumption about the nature of 
the corrupting process and instead adopt a data-driven style. Their 
performance approaches those of the matched training with an in-
crease in the amount of adaptation data. However, large amounts 
of adaptation data are required to achieve good performance, es-
pecially under severe distortion.

Unlike speaker adaptation methods, another type of model 
adaptation methods learn environment characteristic from adapta-
tion data but instead takes advantage of the known relationship 
between the clean and distorted acoustic models. Typically, the 
signal bias removal (SBR) [17] models the channel distortion as 
a constant term added to the Gaussian means of the clean HMMs. 
This method estimates the channel term in a maximum likelihood 

Fig. 1. Illustration of the invertible and non-invertible regions of band-limited chan-
nels. The full-bandwidth is K O –K E . (a) A low-pass channel is non-invertible in the 
high-frequency band, (b) a band-pass channel is non-invertible in both the low- and 
high-frequency bands.

estimation (MLE) manner and removes this term from the means 
in the HMMs. The parallel model combination (PMC) [18–20] ex-
ploits the mismatch function to combine the clean models with 
the noise models in the log-spectrum domain. This method is pro-
posed to compensate for additive noise only in [18], and extended 
to address both additive noise and channel distortion in [19,20]
by modifying the mismatch function. The PCA–CMS based PMC 
combines robust feature and PMC to improve the robustness of 
speech recognition systems [21]. This algorithm utilizes cepstral 
mean subtraction (CMS) normalization ability and principal com-
ponent analysis (PCA) compression and de-correlation capability 
in the combination with PMC model transformation method. The 
VTS adaptation method [22–26] linearizes the distortion model [6]
with the VTS approximation. Next, it estimates the additive noise 
and channel distortion in an EM algorithm framework and mod-
ifies the clean acoustic models to match the distorted speech. In 
addition, current methods can further improve their performance 
by adopting uncertainty decoding [27].

Missing feature techniques [53] have achieved success in com-
pensation for additive noise, and they can also be combined with 
traditional channel compensation methods to deal with both ad-
ditive noise and channel distortion. Segbroeck and Hamme [54]
propose a method which treat channel distortion as a constant 
term in the log-spectrum domain and then estimate it by max-
imizing the log-likelihood of the optimal state sequence of an 
observation sequence. Palomaki et al. [55] combine spectral fea-
tures and cepstral features within the missing data framework to 
handle convolutional distortion and additive noise. They also pro-
pose a method for handling reverberated speech which attempts to 
identify time-frequency regions that are not badly contaminated by 
reverberation [56].

Although current methods have achieved improvements in sim-
ple channel environments, their performance are still limited in 
complex channel environments. In this paper, we consider two 
complex situations. The first case is that the channel changes from 
one to another frequently. Under this condition, it is impractical 
for data-driven methods to compensate for the channel distortion 
that varies over time. The second case is that the speech is band-
limited in comparison with the training speech. Under this situa-
tion, the speech spectrum in a stop-band is removed completely 
and the effect of the channels is non-invertible. As shown in Fig. 1, 
the bandwidth of the training speech, i.e., the full-bandwidth is 
K O –K E . If speech passes through a low-pass (Fig. 1(a)) or band-
pass (Fig. 1(b)) channel, the spectrum within stop-bands is heavily 
attenuated to be channel noise [29]. This type of speech is also 
called band-limited speech. It is shown in Section 3 that the chan-
nel distortion varies over speech frames when the channel has 
non-invertible bands (stop-bands). Therefore, the methods based 
on the assumption that the channel distortion is a constant bias 
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