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a  b  s  t  r  a  c  t

Background:  The  pressure  dependent  recruitment  model  (PRM)  is a comprehensive  mathematical
description  of pulmonary  mechanics  in  acute  respiratory  distress  syndrome  (ARDS).  However,  previous
investigations  of the  PRM  implied  that  the number  of  model  parameters  may  cause  inaccurate  parameter
estimation.
Methods:  PRM  models  were  evaluated  for 12 ARDS  patients  that  underwent  a low-flow  recruitment
manoeuvre.  The  identified  parameter  set formed  the  basis  of  a  parameter  reduction  investigation  of the
PRM.  The  parameter  reduction  investigation  measured  the  mean  cohort  residual  error  ( )  yielded  by
each  possible  combination  of identified  parameter  set  with  the  non-identified  parameter  values  set  to  a
priori  population  constants.
Results:  Reducing  the  five  variable  PRM  to a  particular  three  variable  model  configuration  produced  a
limited  increase  in model  fit to  data  residuals  ( 5 = 22.68,   3 = 29.21  mbar).  The  reduced  model  evaluates
airway-resistance,  compliance  and  distension  as  model  variables  and  uses  population  values  for  alveoli
opening  pressure  and  the  ratio  of open  alveoli  at end  expiratory.
Conclusions:  The  reduced  PRM  model  captures  all major  pressure–volume  response  features  in the  ARDS
patients.  Reduced  parameterisation  allows  more  robust  parameter  identification  and  thus more  reliable
parameter  estimates  that  may  prove  more  useful  in a clinical  setting.

© 2013  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Model-based decision support has been applied to respira-
tory support in critical care and has provided improved patient
outcomes and healthcare cost-efficiency [1]. The methodol-
ogy typically characterises patient-specific pressure–volume (PV)
responses mathematically and uses this characterisation to pre-
dict the response to therapy [2–4]. Hence, therapeutic choices can
be assessed prior to application and the risk of excessive pressure
harming alveoli or insufficient tidal volume and oxidation can be
mitigated [5,6].
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Mathematical characterisation of the patient’s PV response is
achieved by fitting a model of PV mechanics to patient data [7,8].
Respiratory mechanics models differ in their level of parameteri-
sation and their ability to describe the characteristics that occur in
typical PV response curves [2,3,9]. The most clinically useful model
formulations are capable of capturing the patient characteristics
that are important for modelling the potential patient responses
to particular therapeutic choices. However, ascertaining the ideal
model formulation or level of parameterisation is difficult process
and may  be different for different patient groups [2,8]. In particular,
increasing the parameterisation of the model typically increases
the models ability to exactly capture all of the PV characteris-
tics that appear in data. However, increased parameterisation also
increases parameter trade-off, and potentially limits the parame-
ter estimation accuracy and predictive capability of the model for
different respiratory loading conditions [10,11].

This investigation re-parameterises the pressure-dependent
recruitment model (PRM) defined by Schranz et al.  The PRM model
is a mathematical formulation of the Hickling description of respi-
ratory mechanics [12]. Hickling described lung recruitment as
a discrete process in which layers of alveoli open at particular
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evenly distributed opening pressures. The Schranz et al. formu-
lation includes compliance and distension characteristics to fully
model the mechanics through a broad pressure range. However, the
model requires identification of five model parameters. Although
theoretical structural parameter identifiability has been proven in a
third order Taylor Series approximation to the model [7], the prac-
tical identifiability of the model has proven troublesome [7,13,14]
due to the similarity in model input–output roles [10].

2. Methods

2.1. Pressure-dependent recruitment model (PRM)

Schranz et al. [7] applied the Hickling description of the pul-
monary mechanics of acute respiratory distress syndrome (ARDS)
patients [12] into a PV model that includes distension character-
istics. The model relates the airway pressure (paw) to the induced
lung volume for ARDS patients undergoing mechanical ventilation.
The bronchial path resistance (R) models the ‘Poiseuille’ resistance
to pressure induced flow. The increased resistance to expansion at
higher volumes is quantified with the distension parameter (k). The
linear expansion of the lung with respect to increasing pressure is
determined via the compliance term (C). ARDS patients often have
sections in the lung that are not available at end expiration. Hence,
the ratio of the alveoli that are open at the end of expiration is
a modelled parameter (�). Finally, the pressure threshold (TP) at
which the closed alveoli start to become available is incorporated
into the model. The PRM equations are defined:

paw = RV̇ + pa (1)

ṗa = V̇ekpa
(
C� + C(1 − �)ekTP

14.5∑
PR=0,0.5,1,...

HPRe
kPR

)−1

(2)

where

HPR =
{

0 pa < TP + PR

1 pa ≥ TP + PR
(3)

and paw is the airway pressure [mbar]; R is the airway resistance
[mbar·s·mL−1]; V is the induced volume [mL]; pa is the alveolar
pressure [mbar]; k defines the distension characteristics of the lung
[mbar−1]; C defines the compliance of the bronchial path and alveoli
[mL·mbar−1]; � is the proportion of alveoli that are open at the end
of expiration [1]; TP is the threshold opening pressure of the first
layer of recruitable alveoli [mbar]; PR is the airway pressures above
TP that are required for layers of the lung to open [mbar].

The airway pressure and the air flow-rate are measured, and the
identified model parameter set (X) that defines the patient-specific
response to the low flow inflation (LF) manoeuvre is:

X = {R, C, �, k, TP}  (4)

2.2. Experimental methods

Twelve patients with acute respiratory distress syndrome
(ARDS) that required mechanical ventilation in intensive care were
recruited to undergo a LF manoeuvre. The LF was performed using
an Evita4Lab-System to induce a flow rate of 33 mL  s−1 until air-
way pressure reached 45 mbar. Thus, a quasi-static PV curve can
be measured. Measurements of pressure (piezoresistive pressure
transducer–1790 SI-special instruments, Nördlingen, Germany)
and air flow rate (Fleisch No2 pneumotachograph, F+G GmbH,
Hechingen, Germany) were taken at 125 Hz.

All experiments were undertaken under informed consent
signed by the patient or their legally authorised representative.
Ethical consent was provided by the local ethics committee. Patient

Table 1
Demographic data of the cohort.

Pat. Nr. Gender Age BMI  Diagnose

1 m 37 28.7 Pneumonia
2 f 50 23.0 Pancreatitis, pneumonia
3  f 30 23.8 Peritonitis, sepsis
4 f 50 39.1 Pneumonia
5 m 40 20.8 Perforated sigma, Peritonitis
6  m 42 27.2 Pneumonia, Pancreatitis
7  m 51 27.8 Traumatic Brain Injury, Pneumonia
8  m 45 26.1 S/P Neck Dissection
9  m 38 24.6 Traumatic Brain Injury
10 m 73 26.6 S/P coronary-bypass grafting, Pneumonia
11  m 60 22.8 ARDS
12 m 45 26.8 Blunt abdominal trauma, pneumonia

Mean 47 26.4
(SD) (11) (4.6)

characteristics are given in Table 1. For more experimental details
please refer to Stahl et al. [15].

2.3. Computational application

2.3.1. Stage one – model identification
The full model parameter set X (Eq. (4)) was identified for

each data set using the Matlab (R2012a; 7.14.0.79; 64-bit) func-
tion lsqnonlin.m using the ‘Trust-region reflective’ algorithm. The
function was set to declare convergence when the change in X or
the change in the function was less than 10−8. The maximum num-
ber of allowed forward simulations was  1000 and the minimum �X
allowed when computing the Jacobian was  set as 0.1% of the median
population values for X. This approach ensured successful conver-
gence of the parameter TP,  which could contribute to erroneous
objective function gradient directions at very small �X values. The
identified parameters were constrained to positive values, and had
no effective upper limit.

The model fit to data objective function value ( ) was defined:

  =
∥∥paw,model − paw,data

∥∥
2

(5)

The forward simulations of the model were completed using the
error-stepping method [13]. This method is similar to the Picard
iteration [16], as it iteratively reduces error in a simulation, rather
than performing numerical integration through time-steps. The
method used the following steps:

(1) Assume a pressure curve pa = V/C.
(2) Evaluate H0, 0.5, 1, . . ., 14.5 using pa.
(3) Evaluate Eq. (2) for ṗa using X.
(4) Integrate ṗa for pa.
(5) Iterate about steps 2–4 for 30 iterations by which time the

model simulation has fully stabilised.

Model parameter values are presented for each patient. To
assess robustness of identified model parameters, the change in
objective function for a ±10% change in each element of X was
assessed.

2.3.2. Stage two – model pruning
Previous studies of the PRM model generated parameter esti-

mates for some patients that were not considered physiologically
plausible [7]. Although the model parameters are all structurally
identifiable, the model roles may  be similar in respect to their
effects on the PV response curve and thus inaccuracies in the mea-
sured data had an effect on practical model identification [10].
Hence, the effect of reducing the degree of model parameterisation
is tested.
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