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a b s t r a c t

Single molecule fluorescence microscopy is a powerful technique for uncovering detailed information
about biological systems, both in vitro and in vivo. In such experiments, the inherently low signal to
noise ratios mean that accurate algorithms to separate true signal and background noise are essential
to generate meaningful results. To this end, we have developed a new and robust method to reduce
noise in single molecule fluorescence images by using a Gaussian Markov random field (GMRF) prior in a
Bayesian framework. Two different strategies are proposed to build the prior—an intrinsic GMRF, with a
stationary relationship between pixels and a heterogeneous intrinsic GMRF, with a differently weighted
relationship between pixels classified as molecules and background. Testing with synthetic and real
experimental fluorescence images demonstrates that the heterogeneous intrinsic GMRF is superior to
other conventional de-noising approaches.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Using wide-field fluorescence microscopy with single-molecule
sensitivity, it is now possible to track the movement of individual
fluorophore-tagged molecules such as proteins and lipids in the cell
membrane with nanometer precision. This ability has been used to
characterize the diffusional properties of molecules [1], as well as
monitor their organization relative to other molecules [2] and cel-
lular structures [3], with the potential to work below the diffraction
limit of light.

The design of automatic, efficient computer algorithms for data
analysis is an extremely important facet of such experiments. Ide-
ally, the program should be able to tolerate the low signal to noise
ratios inherent to single-molecule data, must work at high object
density and be able to cope with large data volumes at reasonable
speed. Suitable methods can usually be decomposed into several
sequential steps: filtering of the data, identification of fluorescent
objects and their precise positions, and tracking of these objects by
linking together their positions over an image sequence. For precise
tracking care must be taken to optimize each of these stages.

Previous work in single molecule fluorescence image processing
has focused on the tracking step of the problem, with several sug-
gested approaches resulting in excellent performance, including
a grid algorithm [4], and several Monte Carlo-based algorithms
[5,2]. However, with one exception [5], the initial de-noising step
utilized conventional de-noising algorithms, such as Gaussian
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filtering. Afterwards, the detection algorithms are applied to the
de-noised images in order to separate signals and background
noise. As a result, the tracking algorithms had to assume a cluttered
environment with false alarms and missed detections, impacting
their performance. Thus in this paper we concentrate on the first
step in the data analysis procedure: data filtering or de-noising.

De-noising is commonly carried out using one of two
approaches: Gaussian smoothing or wavelet de-noising. In the first,
the image is smoothed through convolution with a Gaussian or
average kernel, which is related to matched filtering for additive
uncorrelated noise [6]. Use of a Gaussian filter is justified since
the fluorescence profile of an individual molecule is well approxi-
mated by (and hence frequently fitted to) a Gaussian function [7].
In cases where the noise addition is linear or stationary, a Wiener
filter is also used to reduce the noise of the image [8]. For the non-
stationary problem, wavelet based de-noising algorithms are also
well-known for image restoration [9,10]. In computer vision and
image processing society, Markov random field is also popularly
used to reduce noise from images [11–14].

To date, there have been several studies about denoising noisy
single molecule images [15–17]. Lee et al. uses higher order sin-
gular value decomposition (HOSVD) method to extract spatial and
temporal features [15]. Noise reduction in single-molecule exper-
iments was improved by using molecular constructs with short
handles [17]. There are also several approaches to de-noise the
trajectories of the single molecules rather than image denoising
[18–20]. A generalized nonlinear filtration technique introduced by
Haran reduces the noise of single molecule fluorescence trajecto-
ries [18]. Taylor et al. introduced wavelets and Bayesian inference to
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de-noise single molecule fluorescence resonance energy (smFRET)
trajectories [19].

In this work we develop and describe a new de-noising algo-
rithm based on a Gaussian Markov random field (GMRF) model.
Our proposed algorithm is a fully Bayesian approach with few tuned
parameters: we need to set only a small relative threshold param-
eter and specify hyper-parameters to build prior distributions. The
performance of this method relative to previous methods is evalu-
ated using both synthetic and real single molecule data and found
to display significant advantages.

The paper is structured as follows. We first introduce the Gauss-
ian Markov random field in a latent Gaussian model (Section 2)
which is then used to propose mathematical models for de-noising
images (Sections 3 and 4). Finally, we compare the results of the
various algorithms when applied to synthetic and real data (Section
5).

2. Intrinsic Gaussian models

Gaussian Markov random fields (GMRFs) are Gaussian fields
defined on a discrete grid with a Markov property of conditional
independence of a component with all others given its neighbours
[21,22]. They have seen widespread application in statistical mod-
elling, for example in spatio-temporal models [23] and dynamic
linear models [24].

In this paper, a GMRF f is an one dimensional vector which cor-
responds to a two dimensional image lattice {(i, j)|i = 1, . . ., n1 ; j = 1,
. . ., n2} [22]. Let �i,j be differenced values of f at a site (i, j) on the
lattice with neighbours. There are many possible ways to define a
GMRF for f through the �i,j. For example, a first order model can
be defined through assuming the differences with the 4 nearest
neighbours �i,j = {(i−1, j), (i + 1, j), (i, j−1), (i, j + 1)},

�i,j =
∑

(k,l)∈�i,j

(fk,l − fi,j),

to be Gaussian with mean 0 and precision (inverse of variance) �f.
The distribution of f is of multivariate Gaussian form:

p(f|�f ) ∝ exp

⎧⎨
⎩−�f2

n1∑
i=1

n2∑
j=1

�2
i,j

⎫⎬
⎭ = exp

{
−0.5�f (Df)T (Df)

}

= exp
{
−0.5�f f

TQf f
}
, (1)

where Qf = DTD, and D is a n1n2×n1n2 matrix with elementsDm,m =
−
∑n1n2

d=1,d /= mDm,d, Dm1,m2 = −1 if the pixels represented by the
m1th and m2th components are neighbours, and 0 otherwise. The
resulting precision matrix Qf is not of full rank, in which case it is
known as an intrinsic GMRF (IGMRF). This form is used often as
a prior in Bayesian inference. For de-noising, it has the desirable
properties of placing more prior weight on smooth images while
avoiding the specification of a mean value of f. Under very general
conditions, the posterior of f will become a proper distribution [22].

3. The de-noising model

Note that we focus on de-noising a single image in this paper
although we have a sequence of images for processing. For simplic-
ity, we assume images in the sequence are independent so that the
de-noising algorithm can be applied separately. The dependency of
spots across the sequence of images is accounted for in the tracking
process.

3.1. Linear model for an intrinsic GMRF

We assume a Gaussian model for an observed image y in terms
of the underlying signal f and some regression coefficients � = (�1,
�2, �3):

y = zT� + f+ � (2)

where �∼N( · ; 0, �l−1I) for an unstructured term and N denotes the
Gaussian distribution. In this model, z are lattice location indices
so that zT� models any global background noise trend. One of the
simplest and the most practical ways to design z is to use low-pass
filters like average and Gaussian filter to model the background
noise.

3.2. Priors

According to Eqs. (1) and (2), we find that there are unknown
regression coefficients � and a set of two hidden parameters
denoted by � = {�l, �f}. Given this model we assume conjugate prior
forms of the regression coefficients

�∼p(�) = N(�; 0,Q−1
� ), (3)

where Q� = (1/103)I3×3, giving a weak prior, and�f∼G( · ;˛f , ˇf ) and
�l∼G( · ;˛l, ˇl), where G( · ;˛,ˇ) denotes the Gamma distribution
with hyper-parameters ˛ and ˇ. Since �f and �l are non-negative
real variables, we model their priors by using Gamma distribution.
In machine learning and data mining literatures, the Gamma dis-
tribution is commonly used for designing inverse of variance since
the Gaussian distribution of a random variable x with mean � and
covariance (�Q)−1 can be transformed to Gamma distribution with
respect to �.1. In addition, Gamma distribution is also a member of
an exponential family so that we can use it as conjugate prior to
obtain a closed form for the posterior distribution.

According to the linearity of the hidden parameters in Eq. (2),
we can apply Rao-Blackwellization technique [25] to reduce the
dimension of the hidden variables and variances. Now, we have
marginalized likelihood defined by

p(y|f, �) =
∫
�

p(y|f, �, �)p(� |�)d�

=
∫
�

N(y; zT� + f, �−1
l

I)N(�; 0,Q−1
� )d� = N(y; f,˚) (4)

where˚ = �−1
l

zT (zzT )
−1

z+ zTQ−1
� z.

3.3. Problems with the IGMRF prior

Ref. [22] describes several limitations of the intrinsic GMRF. The
limitations will bring following problems in de-noising images:

1 Unwanted blurring effects can be introduced because the IGMRF
penalises discrete boundaries or sharp gradients between neigh-
bours;

2 Weak signals can be ignored by smoothing with the background;
3 Stationary (homogeneous) fields across an image rarely exist in

practice.

1 Given a d dimensional random variable x with � and variance (�Q)−1,

we have p(x|�,�,Q) = N(x;�, (�Q)−1) = |2	�Q|(1/2) exp
{
− �2 (x−�)TQ(x−�)

}
=

�(d/2)|2	Q|(1/2) exp
{
− (x−�)TQ(x−�)

2 �
}
= G
(
�; d2 + 1, (x−�)T (x−�)

2

)
where G( · ; a, b) is

the Gamma distribution with a shape parameter a and a rate parameter b. That is,
normal distribution can be described in the Gaussian distribution with respect to �.
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