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a b s t r a c t

Ultrasound imaging is one of the most important and cheapest instrument used for diagnostic purpose
among the clinicians. Due to inherent limitations of acquisition methods and systems, ultrasound images
are corrupted by the multiplicative speckle noise that degrades the quality and most importantly tex-
ture information present in the ultrasound image. In this paper, we proposed an algorithm based on a
new multiscale geometric representation as discrete ripplet transform and non-linear bilateral filter in
order to reduce the speckle noise in ultrasound images. Ripplet transform with their different features of
anisotropy, localization, directionality and multiscale is employed to provide effective representation of
the noisy coefficients of log transformed ultrasound images. Bilateral filter is applied to the approxima-
tion ripplet coefficients to improve the denoising efficiency and preserve the edge features effectively.
The performance of the proposed method is evaluated by conductive extensive simulations using both
synthetic speckled and real ultrasound images. Experiments show that the proposed method provides
better results of removing the speckle and preserving the edges and image details as compared to several
existing methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The research in the medical imaging has produced many dif-
ferent imaging modalities for the clinical purpose. Among the
different imaging modalities, ultrasound imaging is of a particular
interest for medical diagnosis due to its cost effectiveness, port-
ability, acceptability and safety [1]. However, ultrasound images
are of relatively poor quality due to speckles (considered as mul-
tiplicative noise) present in them [2]. The presence of the speckle
affects the human interpretation of the images as well as computer
assisted methods. Furthermore, edge preserved speckle reduction
and enhancement of the boundaries between different cavities and
organs are of great need in ultrasound images. Thus, speckle reduc-
tion algorithms should be designed in such a manner that they
suppress the speckle as much as possible without any significant
loss of information.

Speckle reduction methods are classified in two categories viz.
image averaging and image filtering [3]. Image averaging is usually
achieved by averaging a series of uncorrelated ultrasound images
from different viewpoints. However, these methods suffer from the
loss of spatial resolution. Image filtering methods can be further
classified as single scale spatial filtering such as linear [4], nonlinear
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adaptive methods [5,6], multiscale spatial filtering such as diffusion
based methods [3,7–9] and others multiscale methods in differ-
ent transform domain such as pyramid [10], wavelet [11], curvelet
[12] and ridgelet [13] based methods which adopt the multiscale
geometric analysis (MGA).

Currently lots of research works on image processing are
concentrated in the transform domain. In that series, wavelet
thresholding has been presented as a true signal estimation tech-
nique that utilizes the capabilities of wavelet transform (WT) for
signal denoising [14–16]. The statistical methods such as non-
linear estimators based on Bayesian approach outperform the
simple wavelet based thresholding [17]. Other despeckling tech-
niques [15,18,19] based on Bayesian theory have been developed
especially for the logarithmically transformed medical ultrasound
images. In Ref. [20], wavelet based total variation filtering has been
reported in which noisy image undergoes several iterations for
suppressing the noise and leads to blurring effect. The WT based
non-linear bilateral filter (NLBF) [21] provides better results of
noise suppression and edge preservation [22]. It utilizes both the
features of wavelet thresholding and bilateral filter. Wavelet trans-
form is able to efficiently represent a function with one dimensional
singularity [12,23]. However, it is less efficient in representing the
sharp transition like line and curve singularities due to its limitation
of direction.

To overcome this limitation, ridgelet transform has been pro-
posed that is able to capture the line singularities of the images.
However, it is unable to represent curve singularities effectively
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[13]. Donoho et al. have used curvelet transform to represent two
dimensional singularities with the smooth curve [12]. The main
idea of the curvelet is to represent a curve as a superposition of
the functions of various lengths and widths obeying the scaling
law. To represent the edges more efficiently in medical ultrasound
images, Jun et al. [23] introduced a new MGA tool called ripplet
transform type I which generalizes the curvelet transform with
two additional parameters to achieve the anisotropy capability that
guarantees to capture the singularities along the arbitrary shaped
curves effectively. The ripplet transform overcomes the limitations
of other transforms and also provides the sparse representation for
the objects. Thus, in the present work, the discrete ripplet trans-
form type I (DRT) is combined with non-linear bilateral filtering
(NLBF) and thresholding scheme for speckle filtering in ultrasound
images.

The paper is structured as follows. Section 2 presents the
methodologies used for the proposed algorithm. Section 3 illus-
trates the proposed algorithm which is based on non-linear filtering
in ripplet domain. To compare the performance of different meth-
ods, various experimental results are presented in Section 4 with
qualitative and quantitative analysis. Conclusions are drawn in the
final Section 5.

2. Methodology

2.1. Ripplet transform

The ripplet transform [23] is a higher dimensional generaliza-
tion of the curvelet transform and is capable to represent the two
dimensional signals at different scales and different directions.
To achieve anisotropic directionality, curvelet transform uses a
parabolic scaling law. From this perspective, the anisotropic prop-
erties of curvelet transform guarantees resolving two dimensional
singularities along C2 curves [12]. On the other hand, ripplet trans-
form provides a new tight frame with a sparse representation for
images with discontinuities along Cd curves [23].

If d = 1, then ripplet does not show the anisotropy behavior. For
d = 2, it has the parabolic scaling same as the curvelets and for d = 3,
ripplet has the cubic scaling and so forth. Ripplet transform gen-
eralizes curvelet transform by adding two parameters, support c
and degree d. Curvelet transform is just a special case of ripplet
with c = 1 and d = 2. The anisotropic capabilities of ripplet transform
type-1 are capable to efficiently represent the singularities along
the arbitrary shaped curves due to these added new parameters c
and d.

The continuous ripplet transform is defined as inner product of
2D integrable function s(�x) and ripplets p

a�b�
(�x) as follows [23].

R(a, �b, �) = 〈s, p
a�b�

〉 =
∫

s(�x)p
a�b�

(�x) d�x (1)

where R(a, �b, �) is the ripplet coefficients and (·) shows the conju-
gate operation. Ripplet function is defined as p

a�b�
(�x) = pa�00(R�(�x −

�b)) and the element function of ripplet in frequency domain is given
by,

p̂a(r, ω) = 1√
c

a
1+d
2d W(a · r)V

(
a1/d

c · a
· ω

)
(2)

where p̂a(r, ω) is the Fourier transform of ripplet element func-

tion pa�00(�x) in polar coordinate, R� =
[

cos� sin�
−sin� cos�

]
is the rotation

matrix, a, �b and � are the scale, position and rotation parame-
ter, respectively. W(r) and V(ω) represent the radial window and
angular window, respectively which satisfy the two admissibility
conditions [23].

∫ 2
1/2

W2(r)(dr/r) = 1 and
∫ 1

−1
V2(t) dt = 1, These two windows

divide the polar frequency domain into wedges shown in Fig. 1(a).
The approximated image can be reproduced by the inverse of the
ripplet transform [23].

s(�x) =
∫

R(a, �b, �)p
a,�b,�

(�x)dad�bd�/a3 (3)

2.1.1. Discrete ripplet transform
In the field of digital image processing, discrete transforms are

needed. So discrete ripplet transform (DRT) are evaluated by dis-
cretizing the parameters of ripplets. The parameter a is sampled
at dyadic intervals whereas �b and � are sampled at equal-spaced
intervals. The scale parameter (a), the position parameter (b) and
rotation parameter (�) are substituted with aj, �bk and �l, respec-

tively which satisfy that aj = 2−j, �bk = [c · 2−j · k1, 2−j/d · k2]
T

and

�l = (2�/c) · (2−[j(1−1/d)]) · l, where �k = [k1k2]T , (·)T denotes the trans-
pose of a vector and j, k1, k2, l ∈Z. The frequency response of ripplet
function is given as [23]:

p̂j(r, ω) = 1√
c

a(1+d/2d)W(2−j · r)V

(
2−j(1/d−1)

c
· ω − l

)
(4)

where W and V satisfy the following conditions

∞∑
j=0

∣∣W(2−j · r)
∣∣2 = 1 and

∞∑
l=−∞

∣∣∣∣V
(

2−j(1/d−1)

c
· ω − l

)∣∣∣∣
2

= 1

For a fixed value of c, parameter d is used to control the resolu-
tion in the directions at each high pass band. For given a fixed value
of d, parameter c controls the number of directions at all high pass
bands. The c and d in combination are used to determine the final
number of the directions at each band together. The discrete rip-
plet transform of the two dimensional signal s(x,y) with size M × N
is given by ripplet coefficients R

j,�k,l
.

R
j,�k,l

=
∑M−1

x=0

∑N−1

y=0
s(x, y)p

j,�k,l
(x, y) (5)

An approximated image ŝ(x, y) can be reconstructed through
inverse discrete ripplet transform

ŝ(x, y) =
∑

j

∑
�k

∑
l
R

j,�k,l
p

j,�k,l
(x, y) (6)

Fig. 1(b) and (c) shows a real ultrasound image and decomposi-
tion of the image processed with ripplet transform, respectively.

2.2. Bilateral filter

Bilateral filter is a non-linear filter performing the edge pre-
served denoising within the spatial domain [21]. Bilateral filter
replaces the pixel values by a weighted sum of the pixels in a local
neighborhood. It is achieved by the combination of two Gauss-
ian filters, spatial (domain) and intensity (range) filter [22]. The
range filter coefficients are proportional to the intensity distance
(s(y) − s(x)) around the neighborhood of a pixel. The domain filter
coefficients are proportional to the spatial distance (y − x) of the
pixel in approximation subband around its neighborhood. So at a
pixel location x, the response of the NLBF can be computed as:

ŝ(x) = 1
h

∑
y ∈ Ns(x)

Df (x, y)Rf (x, y)s(y) (7)
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