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a b s t r a c t

Using nonlinear stochastic state-space model of HIV-1 infection, having as state variables the concen-
tration of healthy and infected cells and the concentration of virions (free virus particles), utilized for
design a control method. In this paper, a new optimal nonlinear stochastic controller is presented based
on a bacterial foraging optimization (BFO) method to decrease the number of infected cells in pres-
ence of stochastic parameters of HIV dynamic. Bacterial foraging optimization sigmoid nonlinear control
(BFO-SNC) is a novel nonlinear robust optimal method that can control the biological characteristics of
nonlinear stochastic HIV dynamic by drug dosage management. The BFOA should optimize this kind of
controller included three parameters. The proposed control method searches the best controller param-
eters domain subject to minimize a stochastic expected value of cost function. Simulation results show
that the proposed BFO-SNC scheme does improve the treatment performance in compare to other con-
trol methods. For comparison with BFO-SNC method, a modified PID controller is chosen as controller
structure.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Therapy of human immunodeficiency virus (HIV) has remained
a great challenge. About thirty-half years ago, HIV began to occur-
rence around the world at a threatening rate. The problems of
HIV/AIDS are very important in present world. Acquired Immuno-
deficiency Syndrome (AIDS) is a kind of disease that can be treated
by using expedient drugs. AIDS occurs when infection with the HIV
destroys the body’s natural protection from illness. The immune
system weakens to the point where opportunistic infections and
certain cancers can attack us [1]. These infections would not cause
problems for healthy people, but for people with AIDS, they may
cause serious or even life-threatening problems.

Blood is a significant part of the body’s immune system. White
bloods cells help to protect people from disease. Important parts of
white bloods cells called T-cells perform a critical role. Some of the
special T-cells are called “helper” cells that the HIV viruses attack
and destroy them. When enough cells are destroyed, the immune
system no longer works and the patient has AIDS. The good news
is that HIV and its complications often can be treated. The proper
treatment can lead HIV carrier patients to relatively normal lives
for many years. Treatment options include antiviral therapy known
as antiretroviral drugs:
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1. Treatments for infections
2. Treatments for cancers
3. Treatments for symptoms antiretroviral drugs slow the progress

of HIV because fewer HIV cells have formed [1].

Mathematical modeling has developed a substantial impact on
clinical result consideration of HIV-1 infection. A massive amount of
deterministic models has been developed to describe the immune
system and its interaction with HIV-1 as well as the results of drug
therapy [2]. Detailed studies that combine modeling analysis with
clinical results show that the initial infection phase may be rep-
resented using simple nonlinear state models [3]. This fact has
illustrated the generation of an increasing number of papers where
therapy strategies derived from control principles. In most pro-
posed methods, their mathematical model has based in relatively
complex systems of nonlinear dynamic equations.

The majority of existing studies consider the HIV dynamics as a
system with two independent control inputs; each input is related
to one of the two drug types, i.e. RTIs and PIs. Many researchers
have shown the dynamic HIV/AIDS studies [4]. Several of the papers
illustrated analytical base of therapeutic aspects, such as switching
protocols drugs on or off during the period of infection. Systems and
control strategies have been applied to the specification of ther-
apeutic methods in [4,5,3,6], using of open-loop optimization or
stabilization based on close-loop control. All of these methods and
design studies are according to ordinary differential equations.
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The problem of designing a heavy-duty control that provides
global stability for an uncertain nonlinear system has been the
subject of considerable research over the last decade. Classical
methods of control design assume full knowledge of the system
arrangement and its constant parameters. If this condition is not
fulfilled, heavy-duty control is recommendable for design with
uncertain parameters varying in the given interval [11]. For nonlin-
ear systems with unknown static nonlinearities satisfying known
functional bounds, the current literature focuses on deterministic
worst-case robust analysis and synthesis. For parametric uncer-
tainty, guaranteed stability-bound estimates frequently are unduly
conservative, and the resulting controller usually needs very high
control attempt. The convex programming problems arise often
in mathematics, engineering and finance problems. Many publi-
cations deal with this problem by numerical algorithms. Since the
computing time greatly depends on the dimension and the struc-
ture of the problems, numerical algorithm is usually less effective
in large-scale or real-time optimization problems. The bacteria for-
aging algorithm (BFA), on the other hand, have massively paralleled
distributed computation and fast convergence. It can be considered
as an efficient method to solve large-scale or real-time optimization
problems.

The essence of bacteria foraging optimization is to establish an
energy function (nonnegative). The dynamic system is normally in
the form of first order ordinary differential equations. It is expected
that for an initial point, the dynamic system will approach its static
state (or equilibrium point) which corresponds the solution of the
underlying optimization problem. An important requirement is
that the energy function decreases monotonically as the dynamic
system approaches an equilibrium point.

Motivated by the above discussions, this paper proposes a
strategy that combines sigmoid function as convex controller and
BFOA in existence of stochastic uncertain parameters that convince
best drug dosage management. Due to the wide variability of the
dynamics associated to different patients, the capacity of a con-
troller to stabilize models that are different from the nominal one
is quite important.

The BFOA proposed by Passino, is a family of nature-inspired
optimization algorithms. For over the last five decades, opti-
mization algorithms like genetic algorithms (GAs), Evolutionary
Programming (EP) and Evolutionary Strategies (ES) have been
developed by researchers. Recently natural swarm inspired algo-
rithms like Particle Swarm Optimization (PSO) and Ant Colony
Optimization (ACO) have found their way into this domain and
proved their effectiveness. Following the same study of swarm-
based algorithms, Passino proposed the BFOA in application of
group foraging strategy of a swarm of E. coli bacteria in multi-
optimal function optimization that is the key idea of the new
algorithm. Bacteria look for nutrients in a manner to maximize
energy obtained per unit time. Sending signals, Specific bacterium
also communicates with others. A bacterium takes foraging deci-
sions after considering two previous factors. The process, where a
bacterium moves by taking small steps while searching for nutri-
ents, is called chemo taxis; and the key idea of BFOA is based on
chemo tactic that movement of virtual bacteria in the problem
searches space [15].

This paper presents BFO-sigmoid nonlinear control systems
(BFO-SNC) and introduces some basic properties like controllabil-
ity, stability and optimality for this class of systems. The previous
studies developed several approaches in the control of the HIV
infection [3,6–8]. Entrance the control strategies in biological sys-
tem control generated the production of an increasing number
of papers where therapy strategies are developed from control
theory. Examples include nonlinear control based on Lyapunov
methods; state drive using bang–bang control [6], adaptive control
[7], optimal control, predictive control and model based feedback

Table 1
Model parameters.

Parameter Value Units Meaning

X1 10 mm−3 S1 Production rate of healthy cell
d 2 × 10−2 S1 Natural death of the cells
K 100 S1 Growth rate of CTL effectors
X1 24 × 10−2 S1 Natural death rate of infected cell
ˇ 2.4 × 10−5 mm3 S1 Infection rate coefficient
C 2.4 S1 Natural death rate of Virions

[8]. Various methods based on time-delay feedback control are
shown in [9]. HIV-1 infection control strategy is developed based
on nonlinear geometric control (feedback linearization) [10].

The influence of this paper illustrated in two parts. First, a
theoretical setting is introduced for stochastic nonlinear HIV-1
infection dynamic modeling where it has applied virus concen-
tration as a stochastic variable with Gaussian distribution. Second,
BFO-sigmoid controller is designed as an automatic drug dosage
management method and applied to HIV dynamics in a more bio-
logical feasible approach.

2. Dynamical model of the HIV-1 infection

The nonlinear state space model for illustrating the HIV-1 bio-
logical behaviors has based on the following three state variables:

X1 Number of healthy cells.
X2 Number of infected cells.
X3 Number of virions (free virus particles).

In most cases, HIV virus affects the level of CD4+ T cells, these
cells are important in helping a body against to infection. Free virus
means the HIV virus is found in blood plasma. The healthy CD4+ T
cells are produced from a source, such as the thymus that is repre-
sented by constant rate S and died at rate d. The coefficient ˇ is the
infection rate. The infected cells result from the infection of healthy
CD4+ T cells and die at a rate �. A free-virus particle is known as
virions, so called viral load, and clear at a rate C (death rate of virus).
The variable K is a rate of free virus particles product per infection
CD4+ T cell. The nonlinear dynamic model to describe HIV with
treatment is as follows [13]:⎧⎪⎨
⎪⎩

Ẋ1 = s − dX1(t) − (1 − U1(t))ˇX1(t)X3(t)

Ẋ2 = (1 − U1(t))ˇX1(t)X3(t) − �X2(t)

Ẋ3 = (1 − U2(t))KX2(t) − CX3(t)

(1)

where the controller input U1(t) and U2(t) are numbers of expedient
drugs. U1 = 0 corresponds to the absence of drug and U1 = 1 to a
drug efficiency in preventing infection of 100%. Actually, with the
available drugs, the efficiency is below 100%, and U1 is constrained
to the interval [0, UMax] with UMax < 1.

Fig. 1 shows the transient time reply to an HIV-1 infection. The
parameters used [12] are the ones of Table 1. The initial conditions
correspond to a healthy person infected with a virus concentration
of one copy per mm3.

By looking at the third state dynamic in X3, it is seen the defines
a stable linear system with input X2 and the system can reduce in
model. The reduced model of HIV-1 is as follows:⎧⎪⎨
⎪⎩

Ẋ1 = s − dX1 − (1 − u)
ˇK

C
X1X2

Ẋ2 = (1 − u)
ˇK

C
X1X2 − �X2

(2)

Since the equation for X3 is stable and unites fast to the equilib-
rium, the controller does not need to control this state explicitly
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