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a b s t r a c t

Eye activity is one of the main sources of artifacts in electroencephalogram (EEG) recordings, however,
the ocular artifact can seriously distort the EEG recordings. It is an open issue to remove the ocular artifact
as completely as possible without losing the useful EEG information. Independent Component Analysis
(ICA) has been one of the correction approaches to correct the ocular artifact in practice. However, ICA
based approach may overly or less remove the artifacts when the EEG sources and ocular sources cannot
be represented in different independent components (ICs). In this paper, a new approach combining
ICA and Auto-Regressive eXogenous (ARX) (ICA-ARX) is proposed for a more robust removal of ocular
artifact. In the proposed approach, to lower the negative effect induced by ICA, ARX is used to build the
multi-models based on the ICA corrected signals and the reference EEG selected before contamination
period for each channel, and then the optimal model will be selected for further artifact removal. The
results applied to both the simulated signals and actual EEG recordings demonstrate the effectiveness of
the proposed approach for ocular artifact removal, and its potential to be used in the EEG related studies.

© 2013 Published by Elsevier Ltd.

1. Introduction

Among the possible sources of artifacts in electroencephalogra-
phy (EEG), eye-activity is one of the major contamination sources.
Eye-activity usually causes an obvious change in the electric field
especially surrounding the eyes, and the electric field over the scalp
of actual brain activities [1] will be seriously distorted by eye-
activity. The ocular artifact induced by eye-activity is not only a
theoretical concern of research, but also an essential issue of EEG
application clinically. With regard to a reliable EEG analysis, the
effect of ocular activities on EEG must be taken into account, which
needs to correct the ocular artifacts. As of current, various methods
have been introduced to remove ocular artifacts [2–8], and the fun-
damental requirement of an ocular artifact removal approach is to
remove artifacts as completely as possible without distorting the
underlying interesting EEG recordings [1,8].

In the early effort, ocular artifacts are reduced by restricting eye
movements and blinking during data acquisition or simply exclud-
ing artifact contaminated trials from further analysis by setting a
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threshold criterion [2]. In practice, it is very difficult for subjects
to control the eye movements and blinking, and the ocular arti-
facts still exist even in the well controlled experiments. As for the
threshold criterion based approach, except for the challenge for
threshold setting, another main problem is that those trials not
satisfied with the criterion will be rejected for further analysis,
which may lead to the loss of trials [1]. One scheme for keep-
ing those artifact contaminated trials is to design a classifier that
takes into account the influence of the artifact [9]. Another feasible
idea is to estimate the artifact or the useful EEG signal from the
contaminated recordings, and this kind of approach includes Elec-
trooculogram (EOG) subtraction [4], Principal Component Analysis
(PCA) [5,6,8] and Independent Component Analysis (ICA) [1,3,10],
and have attracted much attention in recent EEG related studies.
As for the EOG subtraction approach, after the proportion of ocular
contamination is estimated using a simultaneously recorded EOG
for each channel, the EOG signals are subtracted from the original
EEG based on the estimated proportion of ocular contamination.
However, EOG subtraction can lead to a considerable distortion of
the subsequent EEG responses if the proportion is not accurately
estimated. Based on the different assumptions of EEG components,
PCA and ICA are two widely used approaches for ocular artifact
removal. Based on decomposing the signals into uncorrelated com-
ponents, PCA treats the first component with the largest variance as
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the ocular artifact component. PCA may easily isolate an ocular arti-
fact of large amplitude, but PCA cannot well separate eye artifacts
from brain signals when they have comparable amplitudes [11].
ICA decomposes the signals into mutually independent compo-
nents (ICs), and has also been successfully applied to correct ocular
artifacts, as well as other varieties of artifacts from EEG recordings.
Compared to PCA, ICA forces components to be mutually indepen-
dent rather than simply uncorrelated. However, it still has some
problems such as how to separate source signals completely or how
to remove the artifacts automatically due to the lack of the impor-
tant order information of the variances of the components, to be
solved.

In general, ICA can eliminate the artifact components which are
mixed in the brain activity effectively [1]. One limitation of using
ICA for ocular correction is that a straightforward removal of the
ICs containing artifacts most likely results in some loss of EEG data,
because those ICs rarely consist of only blink-related EOG activity.
One limitation of using ICA for ocular correction is that a straight-
forward removal of the ICs containing artifacts likely results in the
loss of useful EEG information, because those ICs may not only con-
sist of blink-related EOG activity, but also EEG information. That is
to say, eye-blink activity and useful EEG data are usually mixed in
the same IC components, and it is inevitable to cause the distor-
tion of EEG information [8,12–15]. Whether the PCA or ICA based
approach, the performance to remove artifact is largely dependent
on whether the artifact and signal can be represented in different
components. When the artifact and signals are represented in the
same component, it is very difficult to remove the artifact without
distorting the useful signal.

System identification is the science of building mathemat-
ical models of dynamic systems from observed input–output
data [16–18]. It can be seen as the interface between the
real world of applications and the mathematical world of con-
trol theory and model abstractions. System identification is
essentially realized by adjusting parameters within a given
model until its output coincides as well as possible with the
measured output. Various studies have proved that system
identification technique can effectively mine the dynamics under-
ling between the input and output, and it has been widely
used in the control and signal processing communities. Auto-
Regressive eXogenous (ARX) is one model of system identification
realizations [18,19].

To remedy the bias introduced by ICA, in this paper, ARX [18,19]
model was proposed to recover the actual EEG information from
the ICA filtered EEG. In the correction procedure, a short period of
‘clean’ EEG before the contamination was used as reference for EEG
correction. With the reference EEG as output and the corresponding
ICA purified EEG as input, multiple ARX models were estimated for
each EEG channel and the optimal model was selected from those
models for each channel. Based on the selected optimal model, the
corresponding EEG filtered by ICA was fed into the selected model
to correct the possible bias induced by ICA for each channel. ARX
identification with lower computational complexity and human
supervision has been fully developed for several decades. Because
ARX uses the temporal structure provided by background signal
and object signal to robustly estimate the model parameters under
various conditions, it has been widely and successfully applied in
processing of neurophysiological signal for various purposes such
as signal extraction of evoked potentials [20] and artifact removal
[21,22].

The structure of this paper is as: Section 2 depicts the detailed
introduction for the correction procedure, and the correspond-
ing information about the used datasets is also given in this
section; Section 3 shows the results for the simulated and
actual datasets; the discussion of this paper is mentioned in
Section 4.

2. Materials and methods

2.1. Materials

In this paper, we used both the simulated EEG and the
experimental EEG to test the performance of the ICA-ARX based
correction.

2.1.1. Simulated EEG data
The simulated EEG data were used to quantitatively evalu-

ate the performances of both ICA and ICA-ARX artifact correction
approaches. In this simulation, the Electrocorticogram (ECoG)
recorded with a sampling rate of 250 Hz on the cortex was regarded
as the EEG source waveforms and a 3-shell head model was used to
project those source waveforms to the international 10-20 system
defined 128 scalp sensors, which can be treated as the pure EEG
without ocular artifacts. In practice, a 2000-point long (8 s) ECoG
waveforms were selected for forward calculation [23]. The scalp
EOG recorded at one EOG channel of an experimental subject was
used to generate the ocular artifacts by the forward calculation. To
be consistent with the simulated EEG, a 2000-point long (8 s) seg-
ment of EOG containing the ocular artifacts was adopted for the
simulation. Due to the volume conductivity of scalp, due to the vol-
ume conductivity of scalp, the EEGs will be also mixed in the EOG
channel. Considering that EOG is of narrow frequency band com-
pared to EEG, we used a band-pass filter (FIR, 50 orders, 2–8 Hz) to
exclude EEG to refine a relatively clean EOG, with which to con-
struct the simulated dataset. The filtered EOG waveforms were
regarded as the waveforms of EOG source, and the same 3-shell
sphere model still performed the forward calculation to generate
the scalp EOG by seeding EOG source in the frontal eye fields of
cortex [23]. The recorded EEG was simulated by mixing the pure
EEG and pure EOG. To evaluate the performances of correction
approaches when EEG was contaminated by ocular artifacts with
different powers, the ratio of the maximal amplitude of the pure
EOG to that of the pure EEG was varied in the simulated study. In
the evaluation study, we used the data in the interval from 3.4 s to
7.6 s (1050 points long) containing the artifacts for evaluation.

2.1.2. Experimental EEG data
The used EEG was recorded in the visual stimulation discern

experiment of the Inhibition of Return (IOR) experiment [24] using
a Geodesic Sensor Net (GSN) of 128-scalp electrodes consistent
with the International 10-20 system. The vertex was used as the
reference. The EEG recordings from each electrode site were digi-
tized online at 250 Hz and filtered with a band-pass of 0.5–45 Hz.
The impedances of all GSN electrodes were kept below 40 k� dur-
ing recording. The averaged value across all electrodes was used as
a re-reference when the data were analyzed.

Fifteen subjects attended the experiment, and the recordings of
7 subjects with obvious ocular artifacts were manually selected for
further analysis, where the ocular artifacts are defined as the EEGs
with amplitude exceeding ±60 �V threshold. The ages of the 7 sub-
jects range from 20 to 31 years, with a mean of 25. This study was
approved by the Institution Research Ethics Board at the University
of Electronic Science & Technology of China, and each participant
provided written consent prior to the study. After experiment, par-
ticipants received a monetary compensation for their time and
efforts.

2.1.3. Evaluation index
In this paper, we used relative error (RE) to evaluate the per-

formances of artifacts removal approaches, where RE is defined as,

RE = |X − Y |
|X| (1)
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