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a b s t r a c t

This paper presents an activity mode recognition approach to identify the motions of the human torso. The
intent recognizer is based on decision tree classification in order to leverage its computational efficiency.
The recognizer uses surface electromyography as the input and CART (classification and regression tree)
as the classifier. The experimental results indicate that the recognizer can extract the user’s intent within
215 ms, which is below the threshold a user will perceive. The approach achieves a low recognition error
rate and a user-unperceived latency by using sliding overlapped analysis window. The intent recognizer
is envisioned to a part a high-level supervisory controller for a powered backbone exoskeleton.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent technological advances in robotics make possible the
development of an exoskeleton that can act as an extension of
themselves. Augmenting the upper and lower limbs has been the
primary focus of exoskeleton research to-date [1–9]. A powered
backbone component of an exoskeleton can increase the load car-
rying capacity of a person and can potentially benefit a wide array
of people, ranging from people bringing groceries into their homes,
to people suffering from disabilities such as: paraplegia and hemi-
plegia, since daily activities such as flexion or extension can prove
to be very challenging for them. In these respective cases, the bene-
fits could result in improved load carrying capacity and an ability to
stand and walk freely. Intuitive control of the device is paramount
so that the user does not need to worry about operation and can
be more concerned about participating in activities of daily life. But
current exoskeleton technology still limits the natural motions of
the torso and activities that users are able to participate in since the
connection between the upper and lower limbs is a rigid spine. Two
methods for inferring user intent are through mechanical sensors
embedded in the device such as joint and inertial measurements
and surface electromyography (sEMG). sEMG signals are detected
over the skin surface and are generated by the electrical activity
of muscle fibers during contraction. Multi-channel EMG signals,
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collected by electrodes placed on the involved muscles, can be
used to identify the user’s intent activity mode since each activity
corresponds to a specific pattern of activation of several muscles.
Therefore, sEMG signals are a significant control input for pow-
ered prostheses, exoskeleton and rehabilitation robots. Some prior
works exist on developing sEMG pattern recognition-based control
approach for many other kinds of powered prostheses, such as: A
Gaussian mixture model based classification scheme for myoelec-
tric control of powered upper limb prostheses is described in [1].
A volitional control approach of a prosthetic knee using surface
electromyography is described in [2]. Other researchers emphasize
on describing the development of pattern recognition approach
based on EMG signal, such as: An EMG-based pattern recogni-
tion approach for identifying locomotion modes by using artificial
neural networks (ANN) and linear discriminant analysis (LDA) is
presented in [3]. A robust, real-time control scheme for multifunc-
tion myoelectric control is presented in [4]. An EMG-based hand
gesture recognition approach for real-time biosignal interfacing is
described in [5].

Current prosthetic devices predominantly utilize sEMG signals
from the user’s body, in addition to pressure and force sensors,
mounted at various locations on the device and along the body.
As part of efforts to identify a suitable sensor set to recognize user
intent, this paper presents an approach based on a sEMG and uses
inertial measurements to classify the training data. EMG signals
from the user’s body correspond to a local, area specific level, and
play the most important role in pattern classification, while iner-
tial measurements correspond to a more holistic and generalized
way of intent recognition. Related prior research works include a
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multimodal interpretation of muscular activities using a body sen-
sor network with electromyogram and inertial sensors [6]. Also, an
automatic recognition method of sign language sub-words based
on portable accelerometer and EMG sensors is described in [7].
A rule-based control approach of walking by using decision trees
and practical sensors is designed in [11]. The objective in our
research is to develop a real-time intent recognition system for
intelligent, powered backbone exoskeleton. This paper will focus on
the activity mode intent recognizer, which is a high-level supervi-
sory controller and its function is to distinguish between the intent
activities modes of subject, such as flexion, extension and twisting.

2. Methodology

Intent recognition, also called goal recognition, is the task of
recognizing the intents of a subject by analyzing some or all of
their actions and/or analyzing the changes in the state resulting
from their actions based on certain classifier. In this research, a
classifier was designed and trained with appropriate database in
order to be used for real time intent recognition. Appropriate set
of sensors, appropriate window length for sensor data streams,
and appropriate set of features to extract from each window need
to be determined in order to train and use the classifier. Further,
an appropriate data dimension reduction method was needed for
real-time implementation. Once the decision tree classifier was
implemented, it was used in real time to determine which activity
was most probable at a certain instant in time. Finally, the result
was essentially low-pass filtered by a majority voting system in
order to filter out noise and increase classification accuracy. The
specific procedure adapted from [10] is described below.

1. Data streams: EMG sensors on the flexor and extensor muscles
of the back and abdomen, motion capture markers at multiple
locations on the back to provide inertial measurements. The raw
data streams were preprocessed by some commonly used meth-
ods include: high-pass filtering, low-pass filtering, rectification
and normalization

2. Feature selection and extraction: Features were selected from
sliding windows in our project since a relatively long window
can be condensed into few information-rich features. Both slid-
ing disjoint and overlapped windows [4] were used in order
to compare their classification accuracy rate and delay time,
respectively. The real-time nature of intent recognition system
requires that the features selected should have low computa-
tional cost, such as mean absolute value or standard deviation.
For each sensor channel, four features will be selected and then
a feature space can be obtained after computing.

3. Dimension reduction: The feature space dimension needs to
be reduced in order to keep the most important informa-
tion, decrease the time requirement for training the classifier
and facilitate the real-time system implementation. A previous
research work on myoelectric pattern classification for upper
limb prostheses [9] shows that principal component analysis
(PCA) dimension reduction algorithm can fulfill the target suc-
cessfully and also improve classification accuracy. So in this
project PCA was considered for dimension reduction.

4. Classification: CART (classification and regression tree) was
chose as the decision tree classifier [11]. It is computational
efficiency to implement, which is very important for real-time
recognition system to ensure a fast response. CART provides a
general framework that can be instantiated in various ways to
produce different decision trees. The fundamental principle of
tree creation is very simple: decisions that lead to a simple, com-
pact tree with few nodes should be preferred. This is a version of
Occam’s razor, that the simplest model that explains data is the

one to be preferred. Therefore, a term called “impurity” should
be defined in order to make sure the data reaching the imme-
diate descendent nodes as pure as possible. Let i(N) denotes the
impurity of a node N. In all cases, i(N) should be 0 if all of the
patterns that reach the node bear the same category label, and
to be large if the categories are equally represented. The most
popular measure is the entropy impurity:

i(N) = −
∑

j

P(ωj)log2 P(ωj) (1)

where P(ωj) is the fraction of patterns at node N that are in cate-
gory ωj. The algorithm constructs the CART by making recursive
binary splitting of the training data set. The data are partitioned
into smaller and smaller subsets which are represented as the
nodes in the tree until all of the nodes are pure. Gini impurity
was used as split criterion:

i(N) =
∑
i /= j

P(ωi)P(ωj) = 1 −
k∑

j=1

P2(ωj) (2)

where i(N) denote the impurity of a node N, P(ωj) is the fraction
of patterns at node N that are in category ωj. After training the
binary decision tree, a 10-fold cross validation (CV) [8] method
was utilized to prune the tree in order to avoid overfitting. There-
fore, the classifier can show strong generalization when applied
to the unknown data.

5. Majority voting scheme: The classification accuracy of the real-
time intent recognizer can be improved by implementing a
low-pass filter. For this work, a majority voting scheme [1] is
used which requires a majority agreement over a frame of activ-
ity mode decisions coming from the previous step in order to
decide whether the high-level controller needs to switch activity
mode or not. Such an approach can filter out noise and increase
classification accuracy, but at the cost of increased delay time.
Thus the tradeoff between classification accuracy and switching
latency based on certain requirement for an application should
be estimated.

3. Approach

3.1. Experimental design

The study involved collecting measurements of surface elec-
tromyogram (sEMG) activity corresponding to specific motions
of a human participant as inputs, and measurement of iner-
tial data (position, velocity, acceleration) corresponding to these
specific motions as outputs. The inertial measurements were
emulated from motion capture data recorded from a high-speed
motion capture system (QualisysTM—Oqus), and the sEMG signals
were recorded using a commercial sEMG measurement system
(DelsysTM Myomonitor-IV). The two systems were synchronized
in order to ensure a common time-stamp on all the recordings. The
motion capture system sampled motion at 240 Hz and used groups
of reflective markers placed at anatomical locations on the partici-
pant’s body, to define points of interest. Principal marker placement
was at the sacrum, and at the L1, T7, T4 and C7 vertebrae. These
vertebral locations were used to divide the back into four distinct
segments that were assumed to be rigid body segments for the
purpose of studying motion [12]. The lumbar segment was defined
from the sacrum to the L1 vertebra, the region between the L1 and
T7 vertebrae was designated the lower thoracic segment, the region
between the T7 and T4 vertebrae was designated the mid-thoracic
segment, and the T4 and C7 vertebrae demarcated the upper tho-
racic segment. Rigid planar clusters of markers, as shown in Fig. 1,
were placed on each of the segments to accurately define and track
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