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a  b  s  t  r  a  c  t

Early  estimation  of  the  probable  impact  of  a pandemic  influenza  outbreak  can  assist  public  health  author-
ities  to ensure  that  response  measures  are  proportionate  to the  scale  of  the  threat.  Recently,  frameworks
based  on  transmissibility  and  severity  have been  proposed  for  initial  characterization  of  pandemic  impact.
Data requirements  to inform  this  assessment  may  be provided  by “First  Few  Hundred”  (FF100)  studies,
which  involve  surveillance—possibly  in  person,  or via  telephone—of  household  members  of confirmed
cases.  This  process  of  enhanced  case  finding  enables  detection  of  cases  across  the  full  spectrum  of clinical
severity,  including  the date  of  symptom  onset.  Such  surveillance  is  continued  until data  for  a  few  hundred
cases,  or  satisfactory  characterization  of the pandemic  strain,  has been  achieved.

We  present  a method  for analysing  these  data,  at the  household  level,  to provide  a posterior  distribution
for  the  parameters  of  a model  that  can  be interpreted  in  terms  of severity  and  transmissibility  of  a
pandemic  strain.  We  account  for imperfect  case  detection,  where  individuals  are  only  observed  with  some
probability  that  can increase  after  a first case  is  detected.  Furthermore,  we  test  this  methodology  using
simulated  data  generated  by  an  independent  model,  developed  for a  different  purpose  and  incorporating
more complex  disease  and  social dynamics.  Our  method  recovers  transmissibility  and  severity  parameters
to a high  degree  of  accuracy  and  provides  a  computationally  efficient  approach  to  estimating  the  impact
of  an  outbreak  in  its early  stages.

© 2017  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Influenza pandemics occur following the emergence of a new
strain of the influenza virus; a strain that is sufficiently immuno-
logically distinct to previous strains such that the majority of
the population has negligible levels of immunity against it. Past
influenza pandemics have given rise to dramatically different scales
of impact; the 1918 Spanish influenza pandemic has been esti-
mated to have caused approximately 40 million deaths worldwide,
whereas the 2009 Swine Flu pandemic has been estimated to
have caused approximately 14,000 deaths worldwide. The ability
to assess the expected impact as early as possible following the
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emergence of a new strain is of obvious benefit to informing propor-
tionate public health response efforts (Van Kerkhove et al., 2010;
Van Kerkhove and Ferguson, 2012; McCaw et al., 2013).

The benefits of early assessment, and the dependency of
response plans and actions hinging on the characterisation of the
pandemic strain, has led to the development of response frame-
works based on the transmissibility and severity of a pandemic
(McCaw et al., 2013; Reed et al., 2013; Australian Department of
Health, 2014; Riley et al., 2015). The motivation is based upon these
two factors—severity and transmissibility—being strong deter-
minants of impact: severity moderates impact through illness,
demand on health services and potential deaths, and transmissi-
bility influences the speed of spread, timing of peak demand on
health services and the overall extent of the pandemic. Transmis-
sibility also determines the likely impact of interventions; often
it is possible to estimate the proportion of transmission that an

http://dx.doi.org/10.1016/j.epidem.2017.01.004
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intervention might avert, hence allowing the estimation of the pos-
sibility of containment or of the reduction in attack rate. A number
of studies will be required in the initial stages of a pandemic to make
a rigorous characterisation of the emergent strain. Enhanced case
finding efforts directed at contacts of early identified cases, also
known as “First Few Hundred” (FF100) studies, provide rich infor-
mation on disease characterisation and spread (Health Protection
Agency England, 2009; Ghani et al., 2009; Cauchemez et al., 2009;
McLean et al., 2010; van Gageldonk-Lafeber et al., 2012; Australian
Department of Health, 2014).

An FF100 study, as the name suggests, involves recording data
on the first few hundred cases, early in the pandemic. The most
well known design is from the UK (Health Protection Agency
England, 2009): following the first confirmed case of the pandemic
strain, that individual and all other members of their household are
surveilled—possibly in person, or via telephone—to identify day(s)
of symptom onset and disease characteristics in other household
members. Supplementary information concerning the household,
such as household size, and possibly age composition, are also
recorded. Studies are continued until data for a few hundred cases,
enabling satisfactory characterisation of the pandemic strain, has
been collected. For this study we assume that household sizes and
dates of symptom onset of members of households, up to the first
few hundred cases, are available. The base scenario we consider is
one of partial detection, where each infectious individual is only
observed with some probability.

In this paper we develop a novel methodology for analysing
and performing inference on this partially observed, FF100 type,
household level data. The assumed underlying model of trans-
mission dynamics is a Markovian households model where there
exists two-levels of mixing—within-households and between-
households (Ball et al., 1997; Black et al., 2013). When analysing
data, we make the assumption that there is only a single intro-
duction of infection into a household. Essentially this means we
perform inference on a large number of small independent out-
breaks rather than a single larger outbreak (O’Dea et al., 2014).
Our detection model accounts for asymptomatic cases as well as
imperfect surveillance. Cases are initially detected with some prob-
ability that can then increase after the first detection. This increase
of the detection probability is due to the increased surveillance of a
household after the first case detection as appropriate for an FF100
study. Previous studies have used household data for inference
(Cauchemez et al., 2004, 2009; Ghani et al., 2009; Lau et al., 2015),
but generally only for estimating secondary attack rates. To ana-
lyse time series data and allow for estimates of transmission rates
requires a completely mechanistic model as we adopt herein. Addi-
tionally the two main determinants of impact in the early stages of
a pandemic, transmissibility and severity (McCaw et al., 2013; Reed
et al., 2013), are simply determined from our model.

For inference, we implement a Bayesian Markov chain Monte
Carlo (MCMC) scheme with exact evaluation of the likelihood
for all the observed data. Exact likelihood evaluation is made
possible through optimisation of code based upon probabilistic
arguments and a novel data structure for minimising the compu-
tations required. This approach provides a posterior distribution
over the parameters of the model that can then be interpreted in
terms of the severity and transmissibility of a pandemic strain. The
only other method for inference with such data is that of multi-
ple imputation or data augmentation (Gibson and Renshaw, 1998;
O’Neill and Roberts, 1999; Cauchemez et al., 2004; Lau et al., 2015).
In this approach, all unobserved events are treated as unknowns to
also be inferred within the MCMC  routine, which allows a great deal
of flexibility in modelling. The trade off of such an approach is that
the MCMC  scheme needed to sample from the joint distribution of
parameters and unknown data is more complex and convergence
can be an issue when there is a large amount of missing data to be

inferred (McKinley et al., 2014). Such an approach is quite differ-
ent to that adopted in this paper where we  essentially consider all
paths of the process at once for a given set of parameters, allowing
us to efficiently scale the algorithm.

The efficiency of the method is important as it allows us to per-
form inference on many, and very large, data sets. This in turn
allows a proper quantification of the variability inherent to this
sort of study, to a degree not previously achieved. In any outbreak
there is a large amount of inherent randomness, but this is mag-
nified in FF100 studies due to the small size of typical households
and partial observation. We  demonstrate correct convergence of
the estimates as the amount of data is increased, but more impor-
tantly study what bias is introduced by smaller, realistic size, data.
Finally the efficiency of our method also ensures utility in real-time
during an enacted FF100 study, including timely advice as to when
enhanced surveillance (i.e., FF100 studies) can be stopped due to
sufficient acquisition of data. Furthermore, our methodology pro-
vides a way  forward to investigate variations on the FF100 study
design and their effectiveness for determining transmissibility and
severity for a range of potential pandemic scenarios.

A difficulty with methodology for pandemics, and in particular
FF100 studies, is a lack of datasets both due to infrequent pan-
demic occurrence and the relatively new consideration of FF100
studies. This makes validation of any proposed methodology diffi-
cult. Whilst one may, as we  undertake herein, test the methodology
on data simulated from the underlying model upon which the
methodology is developed, this does not typically provide adequate
assurance that the methodology will be sufficiently accurate in the
event of the next pandemic, where almost certainly the modelling
assumptions will be violated. Here we  make an attempt to provide
some assurance. This is achieved by testing our methodology using
data that is produced by an independent model, a model that has
been developed for a different purpose and that should more accu-
rately reflect true pandemic (and social) dynamics. The particular
model we  use herein is the microsimulation model of Geard et al.
(2013, 2015), calibrated for a pandemic influenza scenario.

2. Methods

We  first describe the stochastic households model that incor-
porates partial detection of cases that we use to perform inference.
Next we describe the form of the data we assume and how we
structure it before detailing how to calculate the likelihood for
observations from a single household. This allows us to develop the
theory without the complications of making it efficient for infer-
ence over multiple households; this is done in the next section.
We describe how the data from FF100 studies can be naturally
described using a tree structure and then we give an algorithm
to calculate the likelihood using this approach. Finally we  discuss
how data are generated for validation of the methodology. The first
validation is performed using data simulated from the same model
assumed for inference. The second validation is performed on data
generated by a different, more complex model. Brief details of this
are given, emphasising the differences between the two models.

2.1. Stochastic household model

The epidemic dynamics within a household are modelled with
a continuous-time Markov chain. To facilitate efficient inference,
we make the assumption that there is only one introduction into
any household that experiences infection. This is likely to be plau-
sible in the early stages of a pandemic. Note that this is not an
assumption in the micro-simulation model used to generate data
for validation of our methods. Thus we  can assess this assumption
and its implications for inference.
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