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a  b  s  t  r  a  c  t

Mathematical  models  of parasite  transmission  provide  powerful  tools  for assessing  the  impacts  of  inter-
ventions.  Owing  to complexity  and  uncertainty,  no  single  model  may  capture  all  features  of  transmission
and elimination  dynamics.  Multi-model  ensemble  modelling  offers  a  framework  to  help overcome  biases
of single  models.  We  report  on  the  development  of  a first  multi-model  ensemble  of  three  lymphatic
filariasis  (LF)  models  (EPIFIL,  LYMFASIM,  and  TRANSFIL),  and evaluate  its predictive  performance  in  com-
parison with  that of  the constituents  using  calibration  and  validation  data  from  three  case  study sites,  one
each from  the  three  major  LF  endemic  regions:  Africa,  Southeast  Asia  and  Papua  New  Guinea  (PNG).  We
assessed the  performance  of the  respective  models  for  predicting  the  outcomes  of  annual  MDA  strate-
gies  for  various  baseline  scenarios  thought  to  exemplify  the current  endemic  conditions  in  the  three
regions.  The  results  show  that the  constructed  multi-model  ensemble  outperformed  the  single  models
when  evaluated  across  all sites.  Single  models  that  best  fitted  calibration  data  tended  to do  less well in
simulating  the  out-of-sample,  or validation,  intervention  data.  Scenario  modelling  results  demonstrate
that the  multi-model  ensemble  is able  to  compensate  for variance  between  single  models  in  order  to  pro-
duce  more  plausible  predictions  of intervention  impacts.  Our  results  highlight  the  value  of  an  ensemble
approach  to  modelling  parasite  control  dynamics.  However,  its  optimal  use  will  require  further  method-
ological  improvements  as  well  as consideration  of  the  organizational  mechanisms  required  to ensure
that  modelling  results  and  data  are  shared  effectively  between  all stakeholders.

© 2017  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There is increasing appreciation that large-scale parasite control
or elimination problems belong to a decision and policy domain
marked by significant uncertainty, complexity, and spatial het-
erogeneity (Vespignani, 2012; Klepac et al., 2013; Marathe and
Vullikanti, 2013; Bhatt et al., 2015; Heesterbeek et al., 2015). Solv-
ing these problems is particularly germane for the current global
strategies aiming to eliminate complex vector-borne macropar-
asitic diseases, such as lymphatic filariasis (LF), which exhibit a
high degree of geographic heterogeneity in transmission dynamics
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and infection patterns, and consequently in extinction dynamics
(Gambhir et al., 2010; Irvine et al., 2015; Michael and Singh, 2016;
Duerr et al., 2005; Singh and Michael, 2015; Jambulingam et al.,
2016; Stolk et al., 2006; Swaminathan et al., 2008). Although math-
ematical models of transmission can capture many features of these
complexities, it is recognized that any single model may  be inade-
quate to fully explore and predict the whole spectrum of system
behavior (Oreskes et al., 1994; Neuman, 2003). This is partly a
consequence of the inherent complexity of natural systems that
give rise to multiple conceptualizations and mathematical descrip-
tions (Oreskes et al., 1994). It is also a reflection of the fact that
many different model structures and parameter sets can accept-
ably reproduce the observed behavior of a complex dynamical
system, such that model acceptance in one or more settings may
not constitute evidence for general model applicability (Beven and
Freer, 2001; Ramin et al., 2012; Hoeting et al., 1999; Christakos,
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2003). Indeed, it is increasingly realized in this context that even if
approaches based on single models are able to explain the observed
behavior of a dynamical system for a given set of data, such models
may  not generalize well enough to predict future system behavior,
particularly under changed conditions – constituting the so-called
“out of sample” problem (Simidjievski et al., 2015a, 2015b). Taken
together, these uncertainties mean that relying upon forecasts or
future predictions generated by a single model for parasite manage-
ment can lead to significant bias and uncertainty in policy decisions
(Lindström et al., 2015).

Recognizing that there may  not be a true model of a natu-
ral dynamical system, but rather several adequate descriptions
reflecting different conceptual bases and structures (Reichert and
Omlin, 1997), recent work has focused on using ensemble-based
approaches to explicitly account for the uncertainty inherent in
the model selection process (Hoeting et al., 1999; Raftery et al.,
2005; Gal et al., 2014). Thus, a single-model ensemble involves the
use of a number of realizations of an individual model, with dis-
tinct predictions obtained for each realization by either introducing
stochastic elements, perturbing the input data or initial conditions,
or selecting different sets of model parameters (Gal et al., 2014;
Viney et al., 2009). By contrast, in a multi-model ensemble, several
different models are used, wherein rather than picking the sin-
gle “best-fitting” model to predict responses, the aim typically is
to provide some averaged prediction from different models using
various combinatory methods (Hoeting et al., 1999; Raftery et al.,
2005). Multi-model ensemble studies, in applications ranging from
weather forecasting to cell and population dynamics modelling
(Hoeting et al., 1999; Simidjievski et al., 2015a, 2015b; Raftery
et al., 2005; Kuepfer et al., 2007), have highlighted the utility of
this approach to significantly overcome the problems of over-fitting
and model uncertainties, resulting in significant predictive perfor-
mance gain by these models as compared to that of a single model.
Further, studies have shown that even if a multi-model ensem-
ble may  not always be the most skillful, its performance is better
than the worst single model case, and, as it is often also not pos-
sible to predict which of the constituent single-model ensembles
will be worst at a given time and location, the use of multi-model
ensembles is highly advantageous (Matsueda et al., 2007).

Despite the increasing success of the use of multi-model
ensemble methods in other research fields, their application to epi-
demiological modelling has thus far been limited. However, recent
developments in comparing outputs of different influenza mod-
els by the MIDAS network (Halloran et al., 2008), assessment of
different vaccination strategies (Smith et al., 2012) and impacts
of long-term changes in climatic conditions (Ruiz et al., 2014) for
malaria, and ensemble-based predictions of Foot and Mouth Dis-
ease (FMD) epidemics (Lindström et al., 2015), point to the growing
application and value of the method to infectious disease mod-
elling. This body of work demonstrates how combining multiple
models can be used to answer critical questions in epidemiology,
ranging from the provision of greater confidence in health out-
come predictions to improving the ways disease models inform
disease control policy, suggesting that the epidemiological use of
ensemble-based models are only going to increase in the future.

In this paper, we describe the construction and evaluation of an
ensemble of three well-known simulation models of LF epidemiol-
ogy that incorporate different modelling approaches (deterministic
versus stochastic), structures (population versus individual-based)
and parameterization methods (Gambhir et al., 2010; Irvine et al.,
2015; Jambulingam et al., 2016; Chan et al., 1998; Norman et al.,
2000; Plaisier et al., 1998; Subramanian et al., 2004a; Stolk et al.,
2008), in order to better describe the population dynamics of LF
and generate more accurate predictions of the impacts of drug and
vector-based interventions in communities. The following sections
describe the ensemble modelling procedure, analyze prediction

accuracy of the single models as well as the multi-model ensem-
ble, and assess the constructed ensemble model’s performance
in predicting the population dynamics of LF and the outcomes
of various intervention strategies on infection. We  end by dis-
cussing future work to enhance the ensemble model system for
supporting policy-relevant predictions, including potential techni-
cal improvements in ensemble construction, and the international
coordination mechanisms which will be required to link the system
effectively to LF data and to policy making.

2. Methods

2.1. The models

The three single LF models that make up this study are: EPIFIL,
LYMFASIM and TRANSFIL, which are a Monte-Carlo population-
based deterministic (EPIFIL), and stochastic individual-based
(LYMFASIM, TRANSFIL) models. These models thus differ in com-
plexity from being individual to population-level based, but also
in the overall number of parameters used, and in parameteriza-
tion methods followed. There are also other more subtle differences
among the models, including how effects of infection aggregation
are handled, and how drug and vector control are incorporated
(Gambhir et al., 2010; Irvine et al., 2015; Michael and Singh, 2016;
Singh and Michael, 2015; Jambulingam et al., 2016; Stolk et al.,
2006; Swaminathan et al., 2008; Norman et al., 2000; Plaisier
et al., 1998; Subramanian et al., 2004a; Michael et al., 2004; Singh
et al., 2013; Plaisier et al., 2000). These primary inter-model dif-
ferences are summarized in Table 1, while Table S4 in part B of
the Supplementary Information (SI) captures the key similarities
and differences in terms of the model parameters used and opti-
mized during model induction and data fitting, and in running
simulations of interventions using annual mass drug administra-
tions (MDAs) and vector control. The full details of the three models
and their implementation and fitting procedures for LF infection
data have been described extensively previously (Gambhir et al.,
2010; Irvine et al., 2015; Jambulingam et al., 2016; Swaminathan
et al., 2008; Chan et al., 1998; Norman et al., 2000; Plaisier et al.,
1998; Subramanian et al., 2004b), and are summarized in part A of
the SI.

2.2. Experimental setup

We employed an experimental design in which each LF model
was prepared, calibrated and operated by the respective modelling
group, following which the relevant simulation outputs from each
single model were provided for use in constructing the multi-model
LF ensemble. This experimental setup comprised the following
steps. First, the three groups were provided with LF baseline infec-
tion and post-intervention data from three community sites chosen
to represent the vector-mediated transmission dynamics specific
to each of the three major LF endemic regions of Africa (primar-
ily Anopheles-mediated transmission), Papua New Guinea – PNG
– (Anopheles)  and India (Culex) (Singh et al., 2013; Njenga et al.,
2008; Rajagopalan et al., 1989; Subramanian et al., 1989; Das et al.,
1992; Rajagopalan et al., 1988) (Table 2A and B). The groups were
asked to calibrate their models to the baseline microfilariae (mf)
age-prevalence data (=“training” data) from these sites, and to pro-
vide an ensemble of simulations for the construction and analysis of
the multi-model ensemble. Each model aimed to generate 500 fits,
or model members, but the number of initial simulations drawn by
each group varied from 10,000 (LYMFASIM) to 200,000 (EPIFIL) as
a result of differences in the fitting procedures followed and com-
putational intricacies of the three models (see part A of the SI). We
deem these as single-model ensembles, which are calibrated and
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