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a  b  s  t  r  a  c  t

The  World  Health  Organization  and  its  partners  are  aiming  to eliminate  trachoma  as  a  public  health
problem  by  2020. In  this  study,  we  compare  forecasts  of TF prevalence  in  2011  for 7 different  statistical  and
mechanistic  models  across  9 de-identified  trachoma  endemic  districts,  representing  4  unique  trachoma
endemic  countries.  We  forecast  TF prevalence  between  1–6  years  ahead  in time  and  compare  the  7
different  models  to  the observed  2011  data  using  a log-likelihood  score.  An  SIS  model,  including  a district-
specific  random  effect  for  the  district-specific  transmission  coefficient,  had  the  highest  log-likelihood
score  across  all 9 districts  and  was  therefore  the  best  performing  model.  While  overall  the deterministic
transmission  model  was  the  least  well  performing  model,  although  it did  comparably  well  to  the  other
models  for  8 of  9 districts.  We  perform  a  statistically  rigorous  comparison  of the forecasting  ability  of  a
range  of  mathematical  and  statistical  models  across  multiple  endemic  districts  between  1  and  6  years
ahead  of the  last  collected  TF prevalence  data  point  in  2011,  assessing  results  against  surveillance  data.
This study  is a step  towards  making  statements  about  likelihood  and  time  to elimination  with regard  to
the  WHO  GET2020  goals.

©  2017  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Trachoma remains the world’s leading infectious cause of blind-
ness (Anon, 2012; Mariotti et al., 2009), and it is currently estimated
that 200 million individuals are living at risk of blindness from tra-
choma (World Health Organization, 2016). WHO  and its partners
are aiming to eliminate trachoma as a public health concern by
2020. To help achieve this, WHO  endorses the SAFE strategy. This
four pronged approach includes: Surgery for trichiasis, Antibiotics,
particularly mass treatment with azithromycin of all residents of
endemic districts, Facial cleanliness, and Environmental improve-
ment (Taylor et al., 2012).

Elimination of trachoma as a public health problem has a defini-
tion with two component goals. The first is to reduce the prevalence
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of trachomatous inflammation- follicular (TF) in children 1–9 years
old to <5% at the district level by 2020. The second is to reduce the
prevalence of trachomatous trichiasis cases to <1/1000 at the dis-
trict level. In this article we  focus on the achievement of the first
goal outlined.

Mathematical and statistical modelling continues to be used
for a wide range of infectious diseases, including trachoma (Gebre
et al., 2012; Lietman et al., 2011; Liu et al., 2013; Gambhir et al.,
2009; Blake et al., 2009; Pinsent et al., 2016a). Studies are con-
ducted to help understand and quantify epidemiological outcomes
following clinical trials, and to assess the impact of different treat-
ment interventions. In trachoma, detailed randomised control trial
(RCT) data have been analysed and modelled with statistical and
dynamic models (Lietman et al., 2011; Liu et al., 2013; Liu et al.,
2015a; Lietman et al., 1999; Liu et al., 2015b) to assess and pre-
dict the outcomes of given interventions. Such models can also
be used to estimate the resource requirements to achieve certain
goals, such as elimination or the achievement of specific disease
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prevalence/incidence thresholds (Hollingsworth et al., 2015; Stolk
et al., 2015a; Wouters et al., 2014; Stolk et al., 2015b; Turner et al.,
2016). While producing highly informative and accurate forecasts
for an infectious disease is challenging, it is desirable from a pub-
lic health perspective. This is because they enable high priority
regions to be identified and help to develop an understanding of
the resources required in different areas in order to achieve the
proposed targets.

Mathematical and statistical models are used to make pre-
dictions about the future prevalence and incidence of infectious
diseases. However, predictions from individual models are not
commonly tested robustly against other potential forecasts, nor
are they regularly validated against independent data. Never-
theless, robust statistical model comparison of outcomes from
different models is essential, in order to understand the limitations
and strengths of different mathematical and statistical modelling
approaches. Most commonly in trachoma, the Susceptible, Infected,
Susceptible (SIS) model structure has been used (Lietman et al.,
2011; Liu et al., 2013; Gambhir et al., 2009; Liu et al., 2015a; Lietman
et al., 1999; Liu et al., 2015b; Ray et al., 2007; Ray et al., 2009),
though variants of this structure have also been proposed (Pinsent
et al., 2016a; Liu et al., 2015b; Shattock et al., 2015). Liu et al. (Liu
et al., 2015a) conducted a statistical model comparison assessing a
variety of statistical and mechanistic models. Fitting each model to
PCR data, the authors found that statistical regression models and
SIS mechanistic models performed significantly better than expert
opinion. This suggests that the use of mathematical and statistical
modelling may  be useful in projecting trachoma prevalence (Liu
et al., 2015a).

In this study we compare the probabilistic forecasts of TF
prevalence generated by statistical (without trachoma-specific
assumptions), mechanistic (SIS and partially acquired immunity)
and mixed (SIS plus a random effect) models to TF prevalence
estimates determined empirically in field based surveys, for 9
de-identified trachoma endemic districts. Probabilistic prevalence
forecasts are scored as the log-likelihood of the observed 2011
data for each district given the model, allowing us to ascertain
the strengths and weaknesses of different modelling approaches
to make forecasts of TF prevalence.

2. Methods

2.1. Data

We  used de-identified district level TF prevalence data col-
lected and shared by the International Trachoma Initiative (ITI).
These data contained district level TF prevalence at 1 or more time
points, collected between the years 1995–2010. Data after 2010
were available; however, all forecasters were masked to it. Within
this dataset, information regarding the number of rounds of MDA
provided and the years in which they were administered were also
provided for each district. Three of the 4 models we evaluated
used country-level parameters or random effects. These param-
eters were estimated from the ITI data collected between 2001
and 2010. These were data from 43 countries which included 1037
unique districts, of which: 953 had a single survey, 82 had 2 surveys,
1 had 3 surveys, and 1 had 4 surveys.

To estimate the district-level random effects for the SIS and sta-
tistical regression models all district-level data in the ITI database
collected between 1995 and 2010 was used. This included data on
1107 unique districts, of which: 918 had a single survey, 171 had
2 surveys, 17 had 3 surveys, and 1 had 4 surveys; 189 unique dis-
tricts with at least 2 surveys were used to estimate the district-level
random effects.

The district-level transmission coefficients for the deterministic
transmission model used a total of 9 districts for which TF preva-
lence data were present for at least two time points between 1995
and 2010, and for which a TF prevalence data point was  also avail-
able for 2011. As the data were de-identified by country and district
it was not possible to know the population size of the district at
each sampling time point. For each of the 9 districts we  then fore-
cast the distribution of TF prevalence in 2011. Trends in prevalence
over time for each district are presented in Fig. 1, where each line
represents a separate district. Across 8/9 districts we observed a
gradual decline in TF prevalence following initiation of antibiotic
treatment. We note, that for all districts follow-up was infrequent
and hence we have used a much smaller subset of the data to fit
the models. Data on TF prevalence and years they are reported for
is presented in Table 1.

2.2. Mathematical models

2.2.1. Model 1: deterministic transmission model
The first type of model evaluated was an age-structured deter-

ministic ordinary differential equation (ODE) transmission model.
We used a model structure that has been statistically chosen
(Pinsent and Gambhir, 2017) as the most appropriate and parsimo-
nious when fitting to cross-sectional PCR and TF prevalence data
(West et al., 2005). We  consider individuals as susceptible to infec-
tion (S), exposed and incubating (E), infected and infectious with
detectable TF (AI) and those who  remain diseased but no longer
infectious to others (D), individuals in the D state are susceptible
to re-infection with a reduced probability. Those who were re-
infected then returned to the AI state. We  hereafter refer to this
model as Model 1. A schematic diagram of this model structure is
presented in Fig. S1.

The model followed a previously-detailed ‘ladder of infection’
structure (Gambhir et al., 2009; Pinsent et al., 2016a; Pinsent et al.,
2016c), which accounted for the development of immunity to infec-
tion through successive infections (immunity here was represented
as a reduction in an individual’s infectivity and a faster rate of recov-
ery from infection and disease with each successive infection). We
assumed that both the infectivity and that the duration of infection
and disease decreased exponentially with each successive infec-
tion. Further detail on the model structure and parameters used
are provided in the supplementary information and Table S1.

For each of the 9 districts we performed a Markov Chain Monte
Carlo (MCMC) search of the 2D parameter space to estimate and
explore the uncertainty in both estimated parameters (MDA  cover-
age and ˇ). We  then sampled 100 pairs of values from the posterior
distribution to explore the inherent uncertainty in the 2011 fore-
cast generated. Additionally, we  also took 100 sets of samples from
the posterior distributions when our model was  fitted to cross-
sectional PCR and TF data (West et al., 2005) which estimated the
minimum rate of recovery from an individual’s first infection and
disease episode. Forecasts of the 2011 prevalence were thus gen-
erated incorporating uncertainty in the minimum rate of recovery
from infection and disease as well as variation in the estimated
value of  ̌ and coverage. This was done to ensure that we explored
the uncertainty in the natural history parameters and how these
uncertainties may  impact the 2011 forecast. All calculations were
performed in the R 3.2.1 (R Core Team, 2015), the package deSolve
was used to solve the differential equation model (Soetaert et al.,
2010).

2.2.2. Model 2: mixed mechanistic and statistical model
We  also assessed a mixed-effect SIS model, of which there were

three different types, hereafter referred to as Models 2.1, 2.2 and
2.3 respectively. 2.1) a model with country-district-level random
effect given all-district data, 2.2) a model with country-district-
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