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1. Introduction

Functional Magnetic Resonance Imaging (fMRI) provides a
mechanism for observing hemodynamic changes typically based
on blood oxygenation level dependent (BOLD) contrast which is
subsequently correlated to neural activity. The analysis of fMRI data
is generally carried out in three stages: preprocessing of the data,
generation of Statistical Parametric Maps (SPMs) and finally analysis
of the generated SPMs. The purpose of preprocessing is to separate
function activation from artifacts in such a way as to enable a more
accurate analysis of the data. Typical preprocessing steps include:
inhomogeneity correction, baseline correction, spatial/ temporal
smoothing and motion correction (among others). SPMs are usually
formed in the second stage, by statistically comparing images taken
during stimulation (ON) periods and those taken during rest (OFF)
periods. The results are expressed as an image, where intensity
values represent the test statistic under the null hypothesis of no
activation at that voxel. Each statistic indicates the significance of
the activation of the corresponding voxel by that stimulus. Among
the approaches taken to generate SPMs are the General student t test
[2], F and x2 tests [3], Kolmogorov–Smirnov test [4] and correlation
analysis [5]. The merit of these methods is that no assumptions on

the signal and noise distribution are needed; while the disadvantage
is that the difference between two statistical distributions may not
be determined if the difference involves higher order moments of
the distributions. The major objective of analyzing SPMs is to detect
activation regions that are activated by input stimuli. This can be
done by thresholding an SPM at a proper significance p value [6] and/
or at a specific cluster size [7]. This can also be viewed as an un-
supervised clustering/segmentation [8–13] of voxels into active
voxels and inactive voxels during a functional experiment [14].
However, both simple thresholding and conventional clustering
algorithms are solely dependent on the intensities of image pixels
(voxels) and/or the sizes of the clusters, and thus these techniques
ignore spatial correlation, which is believed to be present in SPMs. In
other words, there is a basic a priori assumption regarding fMRI that
there are intrinsic spatial and temporal correlations in the data and
therefore the data tend to have clustered activations. Thus, we
expect that a single activation region will comprise spatially
connected voxels. In fact, some clustering algorithms have utilized
spatial information in the scenario of the segmentation of MR images
[15,16].

Spatial regularization by means of random field theory (RFT) [17]
has been incorporated into the traditional thresholding scheme. In
particular, Gaussian random fields (GRFs) were implemented in
[18]. GRFs allow not only the use of a fixed threshold but the more
general use of an arbitrary threshold in terms of the spatial extent
of the activated region to be used for the detection of significant
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A B S T R A C T

The paper presents a method for spatial fuzzy clustering (SFC) via Markov Random Fields (MRF) for the

detection of brain activation regions in Functional Magnetic Resonance Imaging (fMRI) statistical

parametric maps (SPMs) to improve the accuracy of the detection of such regions. The fMRI SPM is

assumed to be an MRF and we define a fuzzy neighborhood energy function to describe the interaction

between neighboring voxels. The final labeling is determined by a joint fuzzy membership. We compare

the proposed spatial fuzzy clustering technique with the usual voxel-wise thresholding, traditional

fuzzy clustering and Contextual Clustering (CC) [E. Salli, H.J. Aronen, S. Savolainen, A. Korvenoja, A. Visa,

Contextual clustering for analysis of functional MRI data, IEEE Transactions on Medical Imaging 20

(2001) 403–414]. Experiments based on synthetic and real fMRI data demonstrate that the clustering

performance of our method is significantly better than both simple thresholding and conventional non-

spatial fuzzy clustering techniques. Our experiments also show that in relatively high quality SPMs

(contrast to noise ratio ðCNRÞ>2:5), the performance of SFC and CC is very similar. In the case of the

simulated datasets, when the SPMs have poor quality (CNR<2:5), our method outperforms CC in

reducing false positives and improving classification accuracy.
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activations. The GRF assumption necessitates spatial filtering due to
its random nature to avoid false activations [19]. However, this
process will increase the significance of large activated regions and
decrease that of small activated regions such that large weakly
activated or small strongly activated regions may be misinterpreted.

On the other hand, Markov Random Fields (MRFs) [19–21] have
been utilized to include spatial correlations in the analysis of MRI/
fMRI. In [22], Descombes et al. both restored fMRI signals and
preserved transitions using a spatio-temporal MRF. Svensen et al.
[23] constructed a mixture model based on an MRF for
segmentation of the image into regions with different character-
istics of the Hemodynamic Response Function (HRF). In addition,
instead of modeling raw time series, Holmes [24] proposed to
utilize MRFs to analyze SPMs from PET studies. SPMs from fMRI
were thereafter analyzed and modeled via MRFs in [1,25,26]. In
contrast to the previous hard clustering efforts, we present a
spatial fuzzy clustering framework in the paper. One particular
technique of interest to us is the method known as Contextual
Clustering (CC) [1]. In CC, spatial information is taken into account
by considering the number of activated neighbors of a voxel and a
subsequent contextual classification rule is derived. On the other
hand, here we formalize the interaction between neighboring
voxels by a fuzzy neighborhood energy function and the final
labeling is determined by a joint fuzzy membership. In the
following sections, we discuss and compare CC against the method
described here, i.e., spatial fuzzy clustering (SFC). SFC is inspired by
[27], where a spatial-spectral fuzzy c-means procedure was
implemented to produce thematic maps from remotely sensed
multispectral imagery. We extend it to a more generalized and
systematic spatial fuzzy clustering framework and apply it to the
detection of activation regions in fMRI SPMs. The SFC framework
can be adapted to any known general fuzzy clustering method, and
it happens that spatial fuzzy c-means is a special case of the more
general framework. We validate the method by testing it on
simulated data as well as on real fMRI data. The results indicate
that SFC is better than voxel-wise thresholding and conventional
fuzzy clustering methods in increasing classification accuracy and
controlling false positive rates, as well as preserving extremely
small (even single voxel) activation regions with significant high
statistical values. The proposed SFC performs similar to CC in high
CNRs, and is more robust to noise than CC in low CNRs.

2. Materials and methods

2.1. Contextual Clustering

Contextual Clustering (CC) [1] requires the distribution of non-
active voxels in a statistical parametric map to be Gaussian.
Therefore, in applying CC to SPMs, such SPMs should be computed
by a method which leads to the resulting distribution of non-active
voxels which are then able to be transformed into a (normal)
Gaussian. The intensity value of each voxel in an SPM represents
the test statistic at that voxel by which the regions showing
significant signal change corresponding to the task might be
identified. For the purpose of investigating CC, an unpaired Student
t statistic is first computed. The t statistic is calculated on a voxel-
by-voxel basis following standard methods in fMRI to compare the
task stimulus (ON state) against the ‘‘at rest’’ baseline (OFF state).
Corresponding to each statistic is a significance probability (the p

value). For a time series X, in which there are (known) na images
during the task state and nb images during the rest state, the t

statistic is calculated pixel by pixel as follows:

t ¼ X̄a � X̄b

SX̄a�X̄b

(1)

where,

SX̄a�X̄b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

p

na
þ

s2
p

nb

s
(2)

and s2
p is the pooled variance

s2
p ¼

P
ðXa � X̄aÞ

2 þ
P
ðXb � X̄bÞ

2

na þ nb � 2
(3)

The t statistic given above weights the difference in means by the
standard deviations in the ON and OFF states. Large differences
with small standard deviations give high t values and small
differences with large standard deviations give low t values. This
generates a t-distribution with na þ nb � 2 degrees of freedom (d.f.)
under the null hypothesis of no activation. If d.f. is large, the
distribution can be considered as being approximately Gaussian.
Otherwise, it can be transformed to a Gaussian distribution by
computing

z ¼ qzð ptðt;d:f :ÞÞ (4)

where qz is the normal inverse distribution function and ptðt;d:f :Þ
is the cumulative distribution function for t with (d.f.) degrees of
freedom. After the transformation, the z map is produced.

Let f be the probability density function of Gaussian distribu-
tion. One defines a critical value za as:Z 1

za

f ðzÞdz ¼ a
Z 1
�1

f ðzÞdz (5)

For a lower one-sided test, if z< za, ð1� aÞ% is the confidence value
that the null hypothesis is false.

Given the above distribution, it can be seen that the z map
satisfies the prerequisite required by CC. The CC method is then
summarized as [1]: (1) label the voxels with zi < T (where T is a
user specified threshold) as active and other voxels as non-active.
(2) compute for all voxels i the number of active neighbor voxels,
ui. (3) relabel the voxels for which

zi þ
b
T

ui �
N

2

� �
< T (6)

as active and other voxels as non-active. In Eq. (6), N is the number
of neighbors. For example, using 8-connectivity, N ¼ 8. The
parameter b determines the weighting of the contextual informa-
tion and is usually positive. When b equals 0, Eq. (6) becomes a
conventional context-free thresholding rule. (4) the clustering
procedure stops when the current labeling is same as the labeling
obtained in the previous iteration; otherwise go to step (2).

The parameter b is recommended (in [1]) to be set to b ¼ ðT2=sÞ,
where s specifies the excess of activated voxels ðui � ðN=2ÞÞ in the
neighborhood required to classify a non-active voxel to be active
with probability 0.5. Note that a key part of the success of CC is in
the determination of the threshold T. The potential pitfall of CC can
arise in a situation where the distribution of the background area is
non-normal Gaussian or even a non-Gaussian.

2.2. Markov Random Fields and Gibbs fields

MRF is a probability theory to describe and analyze the spatial
or contextual dependencies. We follow standard notation here. Let
S be a finite index set (the set of sites/locations). For every site s2 S

there is a (finite) space Xs of states xs. The space of configurations
x ¼ ðxsÞs2 S is the product X ¼

Q
s2 SXs. We consider probability

measures or distributions
Q

on X; they can be represented byQ
¼ ð
Q
ðxÞÞx2X such that

Q
ðxÞ�0 and Sx2X

Q
ðxÞ ¼ 1. A collection

z ¼ fzfsg : s2 Sg of sites is called a neighborhood system, if s =2 zfsg
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