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a b s t r a c t

A version of the integrable problem of motion of a dynamically symmetric gyrostat about a

fixed point similar to the Kowalevski top, while acted upon by a combination of uniform

gravity and magnetic fields is considered. This version is reduced, in general, to hyper-

elliptic quadratures. The special case when the gyrostatic momentum is absent is solved in

terms of elliptic functions of time.
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1. Introduction

The problem of motion of a heavy rigid body about a fixed

point has a long history beginning with Euler's work [1]. For

most of this history, the main concern of authors was to

isolate cases, when the general solution of the equations of

motion can be expressed explicitly in terms of functions of

time, or, at least, can be reduced to quadratures. This recipe

has succeeded in two cases: Euler's case of a body moving by

inertia and Lagrange's case of a symmetrical top [2].

Separation of variables in Euler's case was found by Euler

himself, but the solution was expressed by Jacobi in terms of

his newly invented elliptic functions. Lagrange reduced the

case of axisymmetric top to separation of variables involving

elliptic integrals. Explicit expression of the solution in terms of

time was initiated by Jacobi and can be found with some

variations in [3e5].

The following historical turn in rigid body dynamics came

in the opposite direction, from the study of the nature of so-

lutions of the equations of motion. Kowalevski [6] isolated the

possible cases which share with Euler's and Lagrange's cases

* Corresponding author.
E-mail addresses: mikeh@inbox.ru (M.P. Kharlamov), hyehia@mans.edu.eg (H.M. Yehia).
URL: http://vlgr.ranepa.ru/pp/hmp

Peer review under responsibility of Mansoura University.

HOSTED BY Available online at www.sciencedirect.com

ScienceDirect

journal homepage: ht tp: / /ees.e lsevier .com/ejbas/default .asp

e g y p t i a n j o u rn a l o f b a s i c a n d a p p l i e d s c i e n c e s 2 ( 2 0 1 5 ) 2 3 6e2 4 2

http://dx.doi.org/10.1016/j.ejbas.2015.05.001
2314-808X/Copyright 2015, Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:mikeh@inbox.ru
mailto:hyehia@mans.edu.eg
http://vlgr.ranepa.ru/pp/hmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejbas.2015.05.001&domain=pdf
www.sciencedirect.com/science/journal/2314808X
http://ees.elsevier.com/ejbas/default.asp
http://dx.doi.org/10.1016/j.ejbas.2015.05.001
http://dx.doi.org/10.1016/j.ejbas.2015.05.001
http://dx.doi.org/10.1016/j.ejbas.2015.05.001
http://creativecommons.org/licenses/by-nc-nd/4.�0/


the property of having their solutions as meromorphic func-

tions of time. It turned out that only one more case satisfies

this criterion. That case became known as Kowalevski's.
Kowalevski obtained the complementary integral for that case

as a quartic polynomial in velocities. She also integrated the

equations of motion in terms of hyperelliptic functions of

time. Her solution was simplified by K€otter [7] and reconsid-

ered by a series of authors. For a detailed history, see e.g. [8].

When a uniformly rotating rotor has its axis of symmetry

fixed in the rigid body, the resulting system is known as a

gyrostat. For this system, the generalization of Lagrange's case
and its solution was straightforward. Euler's case was gener-

alized by Zhukovsky [9]. The corresponding solution was

shown by Volterra to be expressible in terms of sigma func-

tions of Weierstrass [10]. In [11], Wittenburg pointed out

another solution in terms of elliptic functions of time. Detailed

presentation of the history of general and particular solutions

for a heavy gyrostat can be found in [12].

A century after the discovery of Kowalevski's case, its

generalization to the problem of gyrostat has been found in a

different context. The problem of motion of a gyrostat similar

to the Kowalevski top and acted upon by two skew uniform

fields (gravity and magnetic) was considered in [13]. A general

first integral quartic in velocities and generalizing the Kowa-

levski integral was found for this generic problem. As, in the

general case, the two force fields problem does not admit a

symmetry group, the additional cyclic integral does not exist.

It turned out that such integral still exists in two special cases

[13]. The first case generalizes Kowalevski's case of one field to

the gyrostat motion in one field. The second case does not

contain the classical case of Kowalevski, since the intensities

of the two fields are proportional and can vanish only simul-

taneously. In the last case the cyclic variable is a comple-

mentary angle to the sum (or difference) of the two angles of

precession and proper rotation.

In the present paper we accomplish separation of variables

for a version of the last case, corresponding to a special value

of the cyclic constant proportional to the gyrostatic moment

and singled out by the condition that the reduced system

becomes time-reversible.We give two algebraic separations of

variables. In the first one, the cyclic constant is supposed non-

zero and the variables of separation are to be determined as

functions of time by solving hyperelliptic AbeleJacobi equa-

tions. This result is based on the analogy established in [14]

(see also [15] for further generalizations) of a special class of

problems of the gyrostat motion in two fields with the prob-

lems of the gyrostat motion in axially symmetric field with

zero momentum constant. Thus, the first separation given

below corresponds to the algebraic separation [16,17] found by

the method proposed in [18,19] for the Goryachev case. This

separation is not applicable if the gyrostatic moment in the

initial problem is zero. Nevertheless, as it is shown in [14], the

equivalent problem of the rigid body motion in an axisym-

metric field is the integrable case of Chaplygin [20]. Therefore

we give the second separation which transfers the elliptic

separation found by Chaplygin to the two-fields problem.

The two types of separation of variables accomplished here

make it easy to apply the algorithm of finding the admissible

regions for the integral constants and to establish the rough

phase topology of the system [21,22]. Moreover, the recent

results for separated systems [23] give a method to calculate

the exact topological invariants of singular points and all

regular iso-energy levels. This will give the complete topo-

logical analysis of the problem which will be different (as far

as special types of motions are concerned) from the corre-

sponding Goryachev and Chaplygin cases [17,24] since the

analogy of these problemswith themotion of a gyrostat in two

fields does not give a global diffeomorphism of the corre-

sponding phase spaces.

It will also be interesting to analyze all special cases when

the trajectories in reduced systems become periodic. For the

Goryachev case the corresponding quadratures are found in

[17]. In our problem such quadratures can lead to explicit

calculation of the orientationmatrix and therefore provide the

analytical basis for the geometric interpretation of periodic

and two-frequency motions of the considered gyrostat in two

fields.

2. Equations and integrals

The equation of the motion of a gyrostat acted upon by two

homogeneous fields in the general case can be written in the

Euler e Poisson form

_M ¼ M� uþ c1 � aþ c2 � b;
_a ¼ a� u; _b ¼ b� u:

(1)

Hereu is the angular velocity, a and b are the characteristic

vectors of the force fields (say, the vectors of the gravity force

and of the magnetic field strength), c1; c2 are the vectors

pointing from the fixed point O to the centers of the fields

application. All objects are referred to somemoving axes. The

kinetic momentum vector M is connected with the angular

velocity by the relation

M ¼ uIþ l;

where I and l are the inertia tensor at O and the gyrostatic

momentum vector. Both I and l are constant in the moving

frame. We consider the components of all vectors as rows,

thus obtaining the unusual order of the objects in the above

expression for M.

It is known [8] that without changing the plane Oc1c2 in the

body, one can make the pair of the vectors c1; c2 to be ortho-

normal. Let us choose the moving frame Oe1e2e3 of the prin-

cipal axes of the inertia tensor. Suppose that the gyrostat is

dynamically symmetric e1I,e1 ¼ e2I,e2, l ¼ f0;0; lg and the

centers of the fields application lie in the equatorial plane

c1,e3 ¼ 0, c2,e3 ¼ 0. In this case (see [25,26]) by some linear

change of variables one can make the immovable in space

vectors a;b to be mutually orthogonal. Then, after the pair

c1; c2 is made orthonormal, the modules of the vectors a;b

contain all scalar information on the interaction of the gyro-

stat with the fields (e.g. for the gravity field, the module of the

corresponding vector is equal to the product of the gyrostat

weight and the distance from the mass center to the fixed

point). Therefore, we call a and b the intensities of the force

fields. In the case of dynamic symmetry any orthonormal pair

in the equatorial plane becomes principal for the inertia

tensor, so we take e1 ¼ c1, e2 ¼ c2.
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