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a b s t r a c t

This paper introduces the idea of nonlocal normal modes arising in the dynamic analysis
of nanoscale structures. A nonlocal finite element approach is developed for the axial
vibration of nanorods, bending vibration of nanobeams and transverse vibration of
nanoplates. Explicit expressions of the element mass and stiffness matrices are derived
in closed-form as functions of a length-scale parameter. In general the mass matrix can be
expressed as a sum of the classical local mass matrix and a nonlocal part. The nonlocal
part of the mass matrix is scale-dependent and vanishes for systems with larger lengths.
Classical modal analysis and perturbation method are used to understand the dynamic
behaviour of discrete nonlocal systems in the light of classical local systems. The
conditions for the existence of classical normal modes for undamped and damped
nonlocal systems are established. Closed-form approximate expressions of nonlocal
natural frequencies, modes and frequency response functions are derived. Results derived
in the paper are illustrated using examples of axial and bending vibration of nanotubes
and transverse vibration of graphene sheets.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoscale systems, such as those fabricated from simple and complex nanorods, nanobeams [1] and nanoplates, have
attracted keen interest among scientists and engineers. Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes [2], zinc oxide (ZnO) nanowires and boron nitride (BN) nanotubes, while two-dimensional
nanoscale objects include graphene sheets [3] and BN nanosheets [4]. These nanoscale entities or nanostructures are found to
have exciting mechanical, chemical, electrical, optical and electronic properties. Nanostructures are being used in the field of
nanoelectronics, nanodevices, nanosensors, nanooscillators, nanoactuators, nanobearings, and micromechanical resonators,
transporter of drugs, hydrogen storage, electrical batteries, solar cells, nanocomposites and nanooptomechanical systems
(NOMS). Understanding the dynamics of nanostructures is crucial for the development of future generation applications in
these areas.

Experiments at the nanoscale can be difficult as many parameters need to be taken care of. On the other hand, atomistic
computation methods such as molecular dynamic (MD) simulations [5] are computationally prohibitive for nanostructures
with large numbers of atoms. Thus continuum mechanics is an important tool for modelling, understanding and predicting
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physical behaviour of nanostructures. Although continuum models based on classical elasticity are able to predict the general
behaviour of nanostructures, they lack the accountability of effects arising from the small-scale. At small-scale the theory and
laws of classical elasticity may not hold. Consequently for accurate predictions, the employability of the classical continuum
models have been questioned in the analysis of nanostructures and nanoscale systems. To address this, size-dependent
continuum based methods [6–9] are getting in popularity in the modelling of small sized structures as they offer much faster
solutions than molecular dynamic simulations for various nanoengineering problems. Currently research efforts are under-
going to bring in the size-effects within the formulation by modifying the traditional classical mechanics. One popularly used
size-dependant theory is the nonlocal elasticity theory pioneered by Eringen [10], and applied to nanotechnology by
Peddieson et al. [11]. The theory of nonlocal elasticity (nonlocal continuum mechanics) is being increasingly used for efficient
analysis of nanostructures viz. nanorods [12,13], nanobeams [14], nanoplates [15,16], nanorings [17], carbon nanotubes [18,19],
graphenes [20,21], nanoswitches [22] and microtubules [23]. Nonlocal elasticity accounts for the small-scale effects at the
atomistic level. At nanometer scales, size effects often become prominent. Both experimental and atomistic simulation results
have shown a significant size-effect in the mechanical properties when the dimensions of these structures become small
[24,25]. In the nonlocal elasticity theory the small-scale effects are captured by assuming that the stress at a point as a function
of the strains at all points in the domain. Nonlocal theory considers long-range inter-atomic interaction and yields results
dependent on the size of a body [10]. Some of the drawbacks of the classical continuum theory could be efficiently avoided and
size-dependent phenomena can be explained by the nonlocal elasticity theory. A good review on nonlocal elasticity and
application to nanostructures can be found in Ref [26].

Several researchers have used nonlocal theory for dynamic analysis of continuum systems such as nanorods, nanobeams
and nanoplates. Nanorods have found application in energy harvesting, light emitting devices and microelectromechanical
systems (MEMS). Using nonlocal elasticity, various work on mechanical behaviour of nanorods [12,13,27–29] were reported.
Numerous works are seen in the literature regarding analysis (mainly structural) of nanobeams using nonlocal elasticity [26]
and coupled nanobeams [14]. The work on nanobeams is related to carbon nanotubes, boron nitride nanotubes and ZnO
nanowires. Nanoplate models have been used to represent two-dimensional nanostructures such as graphene sheets and BN
sheets. Several works on dynamics of nanoplates using nonlocal theory are available in literature [30,31].

From the brief literature review it is clear that significant research efforts have taken place in the analysis of nanostructures
modelled as a continuum. While the results have given significant insights, the analysis is normally restricted to single-structure
(e.g, a beam or a plate) with simple boundary conditions and no damping. In the future complex nanoscale structures will be
used for next generation nanoelectro-mechanical systems. Therefore, it is necessary to have the ability for design and analysis of
damped built-up structures. The finite element approach for nanoscale structures can provide this generality. Work on nonlocal
finite elements is in its infancy stage. Pisano et al. [32] reported a finite element procedure for nonlocal integral elasticity. Chang
[33] studied the small scale effects on axial vibration of non-uniform and nonhomogeneous nanorods by using the theory of
nonlocal elasticity and the finite element method. Narendar and Gopalakrishnan [34] used the concept of nonlocal elasticity and
applied it for the development of a spectral finite element (SFE) for analysis of nanorods. Recently Adhikari et al. [35] reported
the free and forced axial vibrations of damped nonlocal rods using dynamic nonlocal finite element analysis. Similar to the few
works on nonlocal finite element analysis of nanorods, not many works were reported on the nonlocal finite element
formulation of nanobeams (carbon nanotubes). Phadikar and Pradhan [30] have proposed basic finite element formulations for
a nonlocal elastic EulerBernoulli beam using the Galerkin technique. Studies were carried out for bending, free vibration and
buckling for nonlocal beam with four classical boundary conditions. Pradhan [36] updated the work of nonlocal finite element
to Timoshenko beam theory and applied it to carbon nanotubes. With the finite element analysis bending, buckling and
vibration for nonlocal beams with clamped–clamped, hinged–hinged, clamped–hinged and clamped-free boundary conditions
were illustrated. The basic nonlocal finite elements of undamped two-dimensional nanoplates (such as graphene sheets) were
reported by Phadikar and Pradhan [30]. Recently, Ansari et al. [37] developed nonlocal finite element model for vibration of
embedded multi-layered graphene sheets. The proposed finite elements were based on the Mindlin-type equations of motion
coupled together through the van der Waals interaction. Vibrational characteristics of multi-layered graphene sheets with
different boundary conditions embedded in an elastic medium were considered.

The majority of the reported works on nonlocal finite element analysis consider free vibration studies where the effect of
non-locality on the undamped eigensolutions has been studied. Damped nonlocal systems and forced vibration response
analysis have received little attention. On the other hand, significant body of literature is available [38–40] on finite element
analysis of local dynamical systems. It is necessary to extend the ideas of local modal analysis to nonlocal systems to gain
qualitative as well as quantitative understanding. This way, the dynamic behaviour of general nonlocal discretised systems
can be explained in the light of well known established theories of discrete local systems. The purpose of this paper is to
make contributions in this open area.

The paper is organised as follows. In Section 2 we introduce the nonlocal finite element formulation for the axial vibration
of rods, bending vibration of beams and transverse vibration of plates. Explicit expressions of element mass and stiffness
matrices for the three systems are derived. Modal analysis of discrete nonlocal dynamical systems is discussed in Section 3.
The conditions for the existence of classical normal modes, approximations for nonlocal frequencies and modes are proposed.
In Section 4, dynamic response of damped nonlocal systems and approximation to the frequency response function are
discussed. Analytical results, including the approximations of the nonlocal natural frequencies and modes, are numerically
illustrated for the three systems in Section 5. In Section 6 some conclusions are drawn based on the theoretical and numerical
results obtained in the paper.
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