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Recently a transformation approach for noncoherent radar detector design has been introduced, where 
the classical constant false alarm rate detectors for Exponentially distributed clutter are modified to 
operate in any clutter intensity model of interest. Recent applications of this approach have introduced 
new decision rules for target detection in Pareto and Weibull distributed clutter. These transformed 
detectors tended to lose the constant false alarm rate property with respect to one of the clutter 
parameters. A closer examination of this transformation process yields conditions under which the 
constant false alarm rate property can be retained. Based upon this, a new model for X-band maritime 
radar returns is investigated, and corresponding detectors are developed. The relative merits of this new 
development are investigated with synthetic and real X-band data.

Crown Copyright © 2016 Published by Elsevier Inc. All rights reserved.

1. Introduction

1.1. Constant false alarm rate detectors

Constant false alarm rate (CFAR) detectors are of considerable 
importance in maritime surveillance radar signal processing, and 
their development continues to be explored in many different clut-
ter environments [1–8]. Such detectors are usually proposed with-
out formulation of the optimal Neyman–Pearson detector, but are 
often derived based upon analysis of clutter distribution properties 
and range-Doppler map characteristics [9,10]. Due to the fact that 
Neyman–Pearson detectors require knowledge of clutter distribu-
tion parameters and target strength, these alternative detection 
processes are often introduced in an attempt to avoid variation in 
the desired false alarm probability by sacrificing detection perfor-
mance [11,12].

In earlier low-resolution radar systems, the assumption of Ex-
ponentially distributed amplitude squared (or intensity) clutter 
was found to be valid, and as a result of this, it was possible to 
apply a simple detection process to introduce CFAR. In particular, 
based upon a range-Doppler map, measurements either in range 
or Doppler (or both) can be taken such that they are sufficiently 
separated from a cell under test (CUT), and then averaged. This 
average is then normalised using a threshold multiplier, which pro-
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vides adaptive control of the false alarm probability. The presence 
of a target in the CUT is declared if the return being tested exceeds 
this normalised measure [11].

Fig. 1 illustrates this process in more general terms, and is 
implemented as a sliding window which runs across the range-
Doppler map [13]. The detection strategy takes a sample of obser-
vations (in this case in range or Doppler) and passes them after 
square law detection (SLD) to a shift register as shown. The re-
turns are separated into a series of components. Measurements of 
the clutter are subdivided into two disjoint sets {C1, C2, . . . , CM}
and {CM+1, . . . , CM+N }, each of length M and N respectively. These 
are separated from the CUT by a number of guard cells (shown 
as shaded in Fig. 1). Based upon the two subsets of clutter, two 
measurements are taken, denoted by f1 and f2, which provide a 
synthesis of the clutter, via an appropriate statistic (such as aver-
aging or order statistics, for example). These two measurements 
are then combined to produce an overall measurement of clutter, 
denoted by g( f1, f2). The latter is normalised by τ , which is used 
to regulate the false alarm probability. This is then compared with 
the CUT and a detection decision can be made. This binary result 
is recorded, and the sliding window is then continued over the 
range-Doppler map, and the results can be applied to a moving 
target indicator to allow tracking [14].

In the case where the clutter measurements are homogeneous 
and independent Exponentially distributed returns, a detection 
process such as that illustrated in Fig. 1, can achieve the CFAR 
property for a very large class of admissible clutter measurement 
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Fig. 1. A sliding window detection scheme which is run across a range-Doppler map to arrive at a binary detection decision. The complex signal is processed with square law 
detector (SLD), and then passed to a shift register as shown. Clutter cells (denoted by C1, C2, . . . , CM+N ) are separated from the cell under test (CUT) using guard cells as 
shown. The clutter statistics are then processed, normalised and compared to the CUT to arrive at a binary detection decision. These decisions then provide input to tracking 
algorithms and moving target indicators.

functions f1, f2 and g( f1, f2) [15]. The selection of alternatives 
to the averaging case have been proposed due to the fact that as 
the sliding window is run across the range-Doppler map, the data 
used for clutter measurement will be subjected to interference and 
changes in the clutter homogeneity. Interference can be due to sec-
ondary targets present in the clutter cells, which can be managed 
through the selection of an order statistic (OS) for f1 and f2, for 
example. In the context of maritime surveillance radar, changes in 
the clutter homogeneity can arise from variations in the sea sur-
face. Hence, although a simpler alternative to the Neyman–Pearson 
based detectors, it is an engineering challenge to design an ef-
fective sliding window detection scheme that achieves CFAR and 
manages these performance issues. This is a much more difficult 
exercise when such processes are constructed for higher resolution 
maritime surveillance radar.

1.2. Development of CFAR

The cell-averaging CFAR (CA-CFAR) [16], which bases the 
measurement of clutter level on averaging, is optimal for target 
detection with a Swerling 1 target model in homogeneous Ex-
ponentially distributed clutter [17]. However, in the presence of 
clutter irregularities and interference, the CA-CFAR experiences se-
vere performance degradation [15]. Hence there have been many 
alternative CFAR schemes proposed. Earlier attempts to improve 
on the CA-CFAR’s performance involved the idea of taking the 
smallest-of (SO) of two cell-averaged components of the range 
profile [18]. This detector, known as the SO-CFAR, arose out of 
the need to improve the resolution capability of the CA-CFAR. The 
greatest-of (GO) CFAR was introduced in an attempt to better man-
age false alarm regulation [11,19]. However, both these approaches 
have severe drawbacks as outlined in [15]. The idea of applying an 
order statistic to measure the average level of clutter was thus in-
troduced in [13], producing an OS-CFAR, which could be designed 
to manage interfering targets very well, while also regulating the 
false alarm probability. A further improvement on the OS-CFAR is 
introduced in [15], where a trimmed mean is used. This involves 
censoring of a number of lower and upper clutter measurements 
in the range profile, and then using the sum of the remainder as 
the estimate of the clutter power level. More recent advances in 
CFAR for target detection in Exponentially distributed clutter can 

be found in [20], where a switching mechanism is used to improve 
performance of the CA-CFAR.

With improvements in radar resolution, there has been a nat-
ural progression from the Exponential intensity clutter model to 
others that capture the statistical structure of higher resolution 
radar’s clutter returns. Consequently, there has been extension of 
the CFAR schemes designed for Exponential intensity clutter to the 
Log-Normal [21], Weibull [3,22–24], K [5,25,26] and Pareto [27,28,
30] distributed clutter environments. In the extension to such clut-
ter models, two general approaches have been used. The first is to 
apply the CFAR scheme developed for Exponentially distributed re-
turns directly to the new model of interest. This then necessitates 
the determination of the appropriate threshold multiplier for the 
new clutter environment [24,27]. The second approach is to exploit 
characteristics of the clutter model [21,22]. The first approach can 
always be applied, while the second depends on the availability of 
useful properties of the underlying clutter model.

1.3. Contributions and structure

This paper is concerned with a recently developed transforma-
tion approach for CFAR detector development, introduced in [32], 
which was developed in an attempt to provide a systematic way 
in which detectors could be produced. This approach begins with 
the well-developed CFAR detectors designed to operate in indepen-
dent and identically distributed Exponential clutter, and introduces 
a mapping allowing such detectors to be transformed to operate in 
any clutter model of interest. This generalised the results of [28], 
which examines the special case of the transformation of detec-
tors to operate in Pareto distributed clutter. Also illustrated in [32]
is the result of transforming CFAR detection processes to operate 
in Weibull distributed clutter. The advantages of this transforma-
tion approach is that detectors can be very easily produced for 
new clutter environments while retaining the original formulation 
of the threshold multiplier. As shown in [27], direct adaptation of 
classical detection schemes to the Pareto case can add computa-
tional complexity in the threshold multiplier calculation. The dis-
advantage of the transformation method is that clutter Parameter 
dependence may occur, resulting in the loss of the CFAR property 
with respect to a particular parameter.
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