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Global motion estimation, being one of the most important tools in video processing field with many 
applications, is mainly carried out in pixel or compressed domain. Since those based on the pixels 
have drawbacks such as high computational complexity, most researches are oriented to the compressed 
domain in which motion vectors are utilized. On the other hand, there are many unwanted existing 
outliers in motion vector based global motion estimation because of noise or foreground effects. In 
this paper, proposed motion vector dissimilarity measure is used to remove the outliers to provide fast 
and accurate motion vector based global motion estimation. Performance of the dissimilarity measure is 
further improved by using different neighborhood orientations. Also phase correlation of motion vectors 
are effectively utilized. Therefore small noisy motion vectors are easily detected and different orientations 
contribute to both performance and low latency. Experiments using the proposed method achieve more 
accurate results with less computational complexity compared to the state of the art methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Global Motion Estimation (GME) is a common process of cam-
era motion modeling by selecting and estimating appropriate 
transform parameters in video sequences [1,2]. GME has been 
widely used in many applications such as video retrieval and in-
dexing, image registration, background modeling, moving object 
segmentation, scene analysis, object-oriented coding, and MPEG-
7 video descriptors. Video stabilization by removing undesired 
motions with saliency constraints is implemented in [3]. In this 
particular work, stabilization is based on computing camera paths 
directed by a variety of automatically derived constraints in which 
RANSAC is used with a fast grid-based approach. Another global 
motion based method is implemented for video stabilization using 
homography consistency in which smooth trajectories and consis-
tent inter-frame transition are obtained [4].

Conventional pixel-based GME provides a good performance, 
but have high computational cost especially for real time appli-
cations [5]. Therefore, researches in this field are focused on the 
compressed video sequences in terms of bitstream. Extraction of 
motion vectors (MVs) from bitstream allows a fast GME when 
compared to the pixel domain. However, MVs in the compressed 
domain are often imperfect and incongruous with real camera mo-
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tion [6]. But they are still suitable for removal of outliers with 
satisfying results. In [7], pixel and MV based GME are evaluated 
for camera motion characterization.

In MV based GME, coarsely sampled MV fields from the com-
pressed video are utilized as input data for GME [6]. In recent 
studies, different methods are used for both outlier removal and 
GME. In [1], Newton–Raphson Gradient Descent (GD) method is 
proposed with an iterative approach to estimate the global mo-
tion from a coarsely sampled MV field. In [5], tensor voting is 
used for outlier removal whereas it uses GD for GME. MV based 
outlier removal is commonly accomplished with MVs by calculat-
ing spatial magnitude and phase correlations with their neighbors. 
Nguyen and Lee have proposed tensor voting for outlier removal 
before GME [8]. According to their approach (TV_GD), MVs are first 
encoded by second order stick tensors. A 2D stick voting process 
is then used for each tensor to its predefined neighborhood us-
ing a stick kernel. In voting process, new tensors are encoded and 
simply summed. Finally, by decomposition process of final tensors, 
new eigenvectors are obtained. Input MV field and these eigenvec-
tors are compared by a similarity, which uses a phase difference 
to remove outliers. In [6] (CAS_GD), a cascade composed of three-
filters for outlier removal is used. Input MV is compared with its 
different oriented neighbors by both magnitude and phase differ-
ence to detect outliers in each filter. In [9] (FLT_GD), a magnitude 
difference between a MV and its eight neighbors are used. In [10]
(LSS_ME), least square solution with M-estimator is used in or-
der to reduce influence of outlier MVs and estimate global motion. 
In [11] (LMedS), after prefiltering of MVs, least median of squares 

http://dx.doi.org/10.1016/j.dsp.2015.08.002
1051-2004/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2015.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:byildirim@ssm.gov.tr
mailto:ilgin@eng.ankara.edu.tr
http://dx.doi.org/10.1016/j.dsp.2015.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.08.002&domain=pdf


2 B. Yıldırım, H.A. Ilgın / Digital Signal Processing 46 (2015) 1–9

Table 1
Explanation of notations.

Notation Explanation

a Global motion parameters
�a Change of global motion parameters
(xi , yi ) Coordinate of the ith block
(MVxi ,MV yi ) Motion vector of the ith block
(�xi ,�yi ) Displacement vector for the ith block
E Total estimation error
sk Step size
gk, gp Gradient vector
Hk, H pr Hessian matrix
MV(i, j) Input motion vector
MV(k, l) Neighbor motion vector
R Neighbor coordinates of the interested block
‖u‖ Norm of vector u
ϕ Phase difference between two MVs
d(i, j|n) nth dissimilarity value for block (i, j)
dS(i, j) Total dissimilarity value for block (i, j)
Vr Voting range
σ Standard deviation
c Function of scale

estimator is used for both detecting outliers and estimation of 
global motion. This method has high computational cost due to 
the decoding of DCT coefficients and randomly chosen parameters 
of camera motion. In [12], Random Sample Consensus with least 
square regression (RAN_LS) is used for GME [8,12].

In this paper MV dissimilarity measure is proposed to remove 
outliers to achieve fast and accurate MV-based GME. GME with dif-
ferent motion models and GD algorithms are explained in the fol-
lowing sections. Proposed MV outlier removal approach is detailed 
in Section 4. Experimental comparison of the proposed approach 
with other state of the art methods is given in Section 5. The last 
section concludes the paper with final remarks. Variables used in 
this study and their explanations are summarized in Table 1.

2. Camera motion modeling

Global motion models, such as translational, geometric, affine 
and perspective, are widely used in modeling of camera motion 
[13]. Perspective model has eight parameters being the most gen-
eral one among others as described in [5]. It is taken as a basis 
in [6,8] to generate motion vector field and perform GME. Affine 
model is also popular and has lower computational cost, which is 
appropriate for real time applications. In our approach, we use the 
perspective model similar to the one in [6,8]. For the perspective 
model, parameters can be defined as a = [a0, a1, . . . , a7]. These pa-
rameters are then estimated to obtain global motion. Perspective 
model transformation then can be defined as follows:

x′ = fx(x, y|a) =
(

a0x + a1 y + a2

a6x + a7 y + 1

)

y′ = f y(x, y|a) =
(

a3x + a4 y + a5

a6x + a7 y + 1

)
(1)

where (x, y) and (x′, y′) are the coordinates in the current and ref-
erence frames, respectively. GME based on MVs is constitutively 
performed with an iterative process: Input motion vector field 
is used to estimate global motion parameters. First of all, these 
parameters are initialized by assigned values using input MVs. It-
erative process is then implemented to estimate the parameters 
through minimizing the estimation errors between the input and 
the estimated motion vector field. If the specified condition about 
the change of the parameters is satisfied, iteration stops and the 
estimated parameters are regarded as GM parameters. In MV based 
GME, input frame is divided into blocks. Each block is represented 
with a motion vector. All MVs in the frame constitute input mo-
tion vector field. Considering i as the block index, (xi, yi ) as the 

center of the ith block, and (MVxi, MV yi ) as motion vector of the 
ith block; the displacement vector for motion model a is given as:

(�xi,�yi) = (
x′

i − xi, y′
i − yi

)
= (

fx(x, y|a) − xi, f y(x, y|a) − yi
)

(2)

We need to minimize the estimation error between the input 
and the estimated MV field. Total error E for L motion vectors is 
calculated as follows:

E =
L∑

i=1

wi
((

MVxi − (
x′

i − xi
))2 + (

MV yi − (
y′

i − yi
))2)

(3)

where binary weight wi is 0 or 1, when MV is outlier or inlier, re-
spectively. Before GME, outlier MVs, which are opposed to global 
motion, should be eliminated. Outlier MVs do not fit real camera 
motion and, the better they are detected and discarded, the better 
GME is ensured with less iteration, which means faster conver-
gence to reach final estimation parameters. MVs obtained by Block 
Matching Estimation (BME) algorithm may appear as outliers as 
follows:

• During block-matching process, if Sum of Absolute Differences 
(SAD) for a block is high, MV, which belongs to this block, is 
most probably outlier.

• If MV differs from its neighbors, it is more likely a foreground 
MV.

• The blocks located at the border of a frame is usually emerged 
all of a sudden and do not resemble any of its neighbors.

GME performance can be improved with a robust outlier re-
moval algorithm which is the key point of our study.

3. Gradient descent (GD) algorithm

GD algorithm is a well-known optimization method and fre-
quently used in parameter estimation. It can be implemented to 
one- or multi-dimensional unconstrained problems [14]. The basic 
principle of GD is to find local minimum of a function. If a function 
(objective) is in parabola form, its local minimum can be easily 
calculated with first or second order differentiation. If differential 
information is not known or the function is not a parabola, GD can 
be easily exploited. First, an initial guess point is determined, and 
then this point is decreased/increased with a specified direction 
and a step size by iteration using objective function. If difference 
between decreased/increased (updated) and previous value is be-
low than a predefined threshold, iteration stops and updated value 
is regarded as local minimum point. In our study, the objective 
function is error E given in Eq. (3). In gradient based optimization, 
The Newton–Raphson Method [15] is very effective for estimating 
transform parameters. The biggest benefit of this method is to en-
able usage of second-order Taylor series expansion of the function 
about the current design point, i.e. a quadratic model [16]:

f (xk + sk) ≈ fk + gT
k sk + 1

2
sT

k Hksk (4)

where sk is step (further replaced with transform parameters) to 
minimum (xk + sk). If we differentiate Eq. (4) with respect to sk , 
the left side will be zero. The right side of the equation is in 
quadratic form and consists of gradient vector gk and Hessian ma-
trix Hk . After the differentiation, we obtain the step (parameter), 
which minimizes the quadratic:

sk = −H−1
k gk (5)

where sk is now the solution of the algorithm. In our study, we 
use GD as in [1] because of the advantages explained to estimate 
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