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The presence of jamming usually degrades the detection performance of a detector. Moreover, sufficient 
information about the jamming may be difficult to be obtained. To overcome the problem of adaptive 
array signal detection in noise and completely unknown jamming, we temporarily assume the jamming 
belongs to a subspace which is orthogonal to the signal steering vector in the stage of detector design. 
Consequently, by resorting to the criteria of generalized likelihood ratio test (GLRT) and Wald test, 
we propose two adaptive detectors, which can achieve signal detection and jamming suppression. It is 
shown, by Monte Carlo simulations, that the two proposed adaptive detectors have improved detection 
performance over existing ones.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Detection of a multichannel signal in unknown disturbance is a 
hot topic in the field of array signal processing. The most pioneer-
ing and prominent detectors are Kelly’s generalized likelihood ratio 
test (KGLRT) [1], adaptive matched filter (AMF) [2,3], and adap-
tive coherence estimator (ACE) [4]. Particularly, in [1] the signal 
has a known steering vector but with an unknown amplitude, and 
the noise is Gaussian distributed with an unknown covariance ma-
trix. To estimate the covariance matrix, it is assumed that a set of 
independent and identically distributed (IID) training data is avail-
able. Consequently, the KGLRT is proposed according to the GLRT 
criterion. The AMF is designed for the same detection problem 
in [1], but it is obtained according to the two-step GLRT (2S-GLRT) 
criterion [2,3]. The KGLRT and AMF are both conceived for the ho-
mogeneous environment, where the training data and the test data 
share a common noise covariance matrix. In contrast, the ACE is 
devised in [4] based on the GLRT criterion for the partially homo-
geneous environment, where the test data and training data share 
the same noise covariance matrix only up to an unknown scaling 
factor. The KGLRT, AMF, and ACE are all for the point-like target 
detection, which is further investigated in [5–8] recently. More-
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over, the problem of distributed target detection is dealt with in 
[9–13, and the references therein].

Note that all the cited references above do not take into ac-
count jamming. In practice, however, there usually exists inten-
tional or unintentional jamming [14]. Suppression of deceptive 
jamming is considered in [15], where the jamming is rejected by 
multiple-input multiple-output (MIMO) radar with frequency di-
verse array (FDA). A mainlobe jamming suppression method is 
proposed in [16] based on eigen-projection and covariance matrix 
reconstruction. An intrusion detection system (IDS) framework for 
jamming detection and classification is proposed in [17] for wire-
less networks. The problem of detecting chaff centroid jamming is 
addressed in [18], and it is solved with the aid of the global posi-
tioning system (GPS) and inertial navigation system (INS). In [19]
the jamming is deterministic and lies in a known subspace, many 
GLRT-based detectors are designed. For convenience, the jamming 
model in [19] is referred to as the subspace jamming, which is also 
considered in [20], but it is assumed to lie in both the test and 
training data, and a detector is proposed based on the method of 
sieves. The problem of signal detection in subspace jamming is fur-
ther investigated in [21–24], where the potential target is spread 
in the range domain.

Remarkably, in most of the aforementioned references involved 
jamming it is assumed that some information about the jamming 
is known in advance. However, in practical applications it may be 
very difficult to obtain sufficient knowledge about the jamming. 
This brings a great challenge for signal detection. How to model 
the completely unknown jamming and devise effective detectors is 
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the main motivation of this paper. Particularly, we focus on array 
signal detection of a point-like target in the presence of completely 
unknown jamming. An ad hoc model for the jamming is adopted 
at the stage of detector design. Precisely, we temporarily assume 
that it lies in a subspace orthogonal to the signal steering vec-
tor. Subsequently, we propose two adaptive detectors according to 
the GLRT and Wald test criteria. These two detectors admit cer-
tain intuitive physical interpretations, and they can achieve signal 
integration and jamming suppression simultaneously. For the per-
formance evaluation, the cases of unknown (completely unknown 
or partially unknown) jamming and no jamming are all considered. 
It is shown that in the presence of unknown jamming, the two 
proposed detectors exhibit improved detection performance over 
the existing ones. Moreover, in the case of no jamming the pro-
posed detector, derived according to the GLRT criterion, can still 
provide slightly better detection performance than the existing de-
tectors in some situations.

The remainder of the paper is organized as follows. Section 2
formulates the problem to be solved. Section 3 gives the pro-
posed detectors and shows some important properties of them. 
Numerical examples are provided in Section 4. Finally, Section 5
summarizes the paper.

2. Problem formulation

Suppose the data are received by an N-element uniform linear 
array (ULA). We want to discriminate between a binary hypothe-
sis test, namely, hypothesis H1 that a useful signal su exists in the 
data under test, which is denoted by an N × 1 vector x and hy-
pothesis H0 that no useful signal exists in x. The useful signal su , 
if present, has the form su = as, where a is the unknown nonzero 
signal amplitude and s is a known normalized signal steering vec-
tor. To sum up, the detection problem can be symbolically written 
as{

H0 : a = 0,

H1 : a �= 0.
(1)

The normalized signal steering vector has the form

s = [
1, e j2π ft , . . . , e j2π(N−1) ft

]T
/
√

N (2)

where ft = d cos θt/λ, d is the interelement spacing, λ is the wave-
length, θt is the angle of the target with respect to (w.r.t.) the array, 
and the symbol (·)T is the transpose operation. To avoid grating 
lobe, d is set to be d = λ/2. Thus ft ∈ [−0.5, 0.5] and ft is usually 
called the normalized spatial frequency.

Besides the possible signal, the test data x also contains distur-
bance d, which consists of colored noise n (including clutter and 
white noise) and jamming j. The noise n is modeled as a zero-
mean complex circular Gaussian vector with an unknown covari-
ance matrix R , which is positive definite Hermitian. The jamming 
j is completely unknown. For the detector design, we temporarily 
assume that j is deterministic and lies in a subspace spanned by 
an N × (N − 1) matrix U ⊥ , which is a semi-unitary matrix such 
that U H⊥s = 0(N−1)×1 and U H⊥U ⊥ = I N−1, with (·)H being the con-
jugate transpose. Hence, j can be expressed as

j = U ⊥α, (3)

where α is an (N −1) ×1 unknown coordinate vector. The rationale 
of such a model is explained below. Note that if we define

B = [s, U ⊥], (4)

which is an N × N unitary matrix, then B can be taken as a basis 
of the entire space CN×N . Therefore, there exists an N × 1 vector 
b such that

j = Bb = a j s + U ⊥α (5)

where b = [a j, αT ]T and a j is a scalar. Equation (5) can be recast 
as j = js + j⊥ , where js = a j s and j⊥ = U ⊥α. Note that the com-
ponent js is the part of the jamming projected onto the signal 
subspace 〈s〉, with 〈·〉 standing for the subspace spanned by the 
matrix/vector argument. Moreover, we have js = P s j for a given 
j, where P s = ssH is the orthogonal projection matrix onto the 
signal subspace 〈s〉. For ULAs, the signal steering vector is often 
Vandermonde [25], such as (2), and the array response drops off 
very quickly if the angle between the jamming and signal exceeds 
the beamwidth [26]. Therefore, js is usually small, especially for 
the jamming with low or moderate power. Hence, (5) can be ap-
proximated by (3).

As customary, we also assume that a set of IID training data, 
denoted by xl , l = 1, 2, . . . , L, is available. xl only contains noise nl , 
which shares the same statistical property with n.

3. The proposed detectors

3.1. The Wald test approach

Let Θ be a parameter vector, partitioned as

Θ = [
Θ T

r ,Θ T
s

]
, (6)

where Θr = a and Θ s = [αT , vecT (R)]T , with vec(·) being the vec-
torization operation. Then the Wald test can be devised according 
to the formula [27]

tWald = (Θ̂r1 − Θr0)
H{[

I−1(Θ̂1)
]
Θr ,Θr

}−1
(Θ̂r1 − Θr0), (7)

where Θ̂r1 is the maximum likelihood estimate (MLE) of Θr un-
der H1, Θr0 is the value of Θr under H0, [I−1(Θ̂1)]Θr ,Θr is the 
(Θr, Θr)-part of I−1(Θ), evaluated at Θ̂1, namely, the MLE of Θ
under H1, and

I(Θ) = E

[
∂ ln f1(x, X L)

∂Θ∗
∂ ln f1(x, X L)

∂Θ T

]
(8)

is the Fisher information matrix (FIM) for Θ [27]. The notations 
E[·], ∂(·), (·)∗ , and ln(·) stand for the statistical expectation, partial 
derivative, conjugate, and natural logarithm, respectively.

The joint PDF of x and X L � [x1, x2, . . . , xL] for the problem 
in (1) under H1 is

f1(x, X L) = c det(R)−(L+1) exp
[− tr

(
R−1 S

) − xH
1 R−1x1

]
, (9)

where c = π−N(L+1) , det(·) denotes the determinant of a matrix, 
x1 = x − as − U ⊥α, and S is the sample covariance matrix (SCM) 
defined as

S = X L X H
L . (10)

Taking the logarithm of (9) and performing the derivative w.r.t. a
and a∗ , respectively, yield

∂ ln f1(x, X L)

∂a
= xH

1 R−1s, (11)

∂ ln f1(x, X L)

∂a∗ = sH R−1x1. (12)

Substituting (11) and (12) into (8) results in

IΘr ,Θr (Θ) = sH R−1E
[
x1xH

1

]
R−1s = sH R−1s, (13)

where we have used the fact that E[x1xH
1 ] = R under H1. Taking 

the derivative of (11) w.r.t. α∗ or vecT (R∗) and performing the 
expectation operation yield the fact that IΘr ,Θ s (Θ) is a null vector. 
As a consequence, we have
{[

I−1(Θ)
]
Θr ,Θr

}−1 = [
IΘr ,Θr (Θ)

] = sH R−1s. (14)
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