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Harmony search (HS) and its variants have been found successful applications, however with poor 
solution accuracy and convergence performance for high-dimensional (≥200) multimodal optimization 
problems. The reason is mainly huge search space and multiple local minima. To tackle the problem, 
we present a new HS algorithm called DIHS, which is based on Dynamic-Dimensionality-Reduction-
Adjustment (DDRA) and dynamic fret width (fw) strategy. The former is for avoiding generating invalid 
solutions and the latter is to balance global exploration and local exploitation. Theoretical analysis on 
the DDRA strategy for success rate of update operation is given and influence of related parameters on 
solution accuracy is investigated. Our experiments include comparison on solution accuracy and CPU time 
with seven typical HS algorithms and four widely used evolutionary algorithms (SaDE, CoDE, CMAES and 
CLPSO) and statistical comparison by the Wilcoxon Signed-Rank Test with the seven HS algorithms and 
four evolutionary algorithms. The problems in experiments include twelve multimodal and four complex 
uni-modal functions with high-dimensionality.
Experimental results indicate that the proposed approach can provide significant improvement on 
solution accuracy with less CPU time in solving high-dimensional multimodal optimization problems, 
and the more dimensionality that the optimization problem is, the more benefits it provides.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

High-dimensional multimodal optimization problems are more 
and more often encountered in our real applications, especially due 
to the big data gained from and the complex problems to be solved 
in our real world. They are challenging in that the search space 
is very large due to the high dimensionality of the problem (e.g., 
>200), and the too large number of modals (i.e., too many local 
minima) among which only one is the globally optimal. In the case 
that problem is with more than 1000 dimensions and possibly in-
finite number of local minima, it is of great challenge on how to 
search for the globally optimal solution in an efficient time.

In recent years, swarm intelligent algorithm casts a population 
of individuals to perform an effective heuristic random search in 
parallel with mutual learning process to realize global optimiza-
tion for an optimization problem. It has received much attention in 
comparative to conventional mathematical optimization algorithms 
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in that it is not limited by requiring substantial gradient informa-
tion and not sensitive to initialization [1].

As a typical swarm intelligent algorithm and characterized by 
simplicity, utilizing real-number encoding and fewer mathematical 
requirements and so forth, harmony search (HS) and its variants 
[2–15,51–54], mimicking the process of improvising a musical har-
mony, have been found to be potential in solving optimization 
problems. They have been applied to many fields of science and 
engineering successfully (e.g., pipe network design optimization 
problems [16], structural optimization problems [17,18], nurse ros-
tering problems [19], economic load dispatch problems [20–22], 
PID controller optimization problems [23], location of wireless 
sensor networks [24], trajectory planning for robots [25], vehicle 
routing optimization problems [26,27], reliability problems [28], 
0–1 knapsack problems [29], feature selection [30,31] and so on 
[32–46]).

To our limited knowledge, the present HS and its variants have 
not been found applications to the high-dimensional multimodal 
optimization problems (e.g., the dimensionality is larger than 200). 
Possibly this is due to either the so high dimensionality and/or 
the so many modals (local minima). In this situation, algorithm 
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should be very powerful in exploration; otherwise, the region of 
the globally optimal solution cannot be positioned; and it should 
be also very powerful in exploitation when the region has been 
positioned such that it can be very stable in the region with a 
good property of convergence to the globally optimal solution.

For solving high-dimensional multimodal optimization prob-
lems, balancing exploration power and exploitation power is espe-
cially important. The exploration is to find new regions in search 
space [8], where population diversity plays an important role. The 
exploitation, which expects to obtain a high precision solution, 
means the computing power of the algorithm by using the infor-
mation that has already been collected before. Therefore, explo-
ration power is strongly required before locating into the region 
that contains the globally optimal solution. When the region has 
been found, the exploration power of algorithm should be de-
graded and the exploitation power should be enhanced. A gradual 
transfer from exploration to exploitation should be given for the 
search without a sharp cut.

In this study, we propose a new HS algorithm called DIHS, 
which employs a new Dynamic-Dimensionality-Reduction-
Adjustment (DDRA) strategy and dynamic fret width (fw) strategy. 
The DIHS can achieve a good balance between exploration and ex-
ploitation for solving high-dimensional multimodal optimization 
problems.

The rest of this paper is organized in the following way: Sec-
tion 2 introduces the standard HS algorithm. Take-one strategy for 
fast convergence to globally optimal solution is introduced and 
DIHS algorithm is proposed in Section 3. In Section 4, four param-
eters (Smax, Smin, HMS and fwmid) are investigated, sixteen high-
dimensional benchmark functions and computation results about 
them are discussed, the convergence and robustness on DIHS are 
analyzed and a portfolio optimization problem is also used to in-
vestigate the performance of DIHS. Finally, conclusions are drawn 
in Section 5.

2. Harmony search algorithm

The optimization problem to be solved is below:

Minimize
X

f (X), X = (x1, x2, . . . , xD) ∈ S

S.t. xi ∈ [xLi , xUi ], i = 1,2, . . . , D

where S ⊆ R D , X L = (xL1 , xL2 , . . . , xLD ) and X U = (xU1 , xU2 , . . . ,
xU D ) respectively are lower and upper bounds of the available 
search space, D is the dimensionality of the problem, xi (i =
1, 2, . . . , D) is decision variable.

The implementation of standard HS algorithm for solving opti-
mization problem is as follows:

Step 1. Initialization of optimization problem and algorithm pa-
rameters: The optimization problem and the control parameters of 
HS algorithm are specified. Parameters include HMS, HM consid-
ering rate (HMCR), pitch-adjusting rate (PAR), fret width (fw) (fret 
width is called formerly bandwidth: bw) and the termination cri-
terion (i.e., the maximum function evaluation times: MaxFEs).

Step 2. Initializing the HM with a uniformly distributed random 
number in search space S . HM is a matrix of size HMS × D .

Step 3. Improvising a new harmony Xnew = (xnew
1 , xnew

2 , . . . ,
xnew

D ) based on the following three rules:
For each note xnew

i (i = 1, 2, . . . , D)
If r1 < HMCR, perform rule (a): Harmony memory considera-

tion rule.
If r2 < PAR, perform rule (b): Pitching adjustment rule.

Else perform random consideration rule (c) with probability
1-HMCR.

End
where r1 and r2 are uniformly distributed random number
between 0 and 1.

Step 4. If the Xnew is better than the worst harmony in the HM, 
judged in terms of the objective function value, Xnew replaces the 
worst harmony in the HM.

Step 5. Checking the stopping criterion. If stopping criterion 
(MaxFEs) is meet, computation is terminated. Otherwise, Step 3 
and Step 4 are repeated.

3. The proposed algorithm

Due to the high dimensionality and the multi-modality of the 
optimization problem, one needs to consider many problems in 
great detail such that the globally optimal solution can be reached 
with an efficient computation time: under the constraint that one 
cannot provide too large number of samples in HM, (1) in the 
initial search process, exploration power should be as large as pos-
sible such that one cannot lose the region of the globally optimal 
solution; (2) whenever the solutions in the HM are suboptimal 
in that they are close to the globally optimal solution, the search 
should be as fast as possible to reach the globally optimal solution, 
rather than destroyed by search strategy; (3) the search is a grad-
ual process which requires a smooth transfer from initialization to 
convergence.

For that purpose, and considering that the dimension is too 
high and the modals are possibly too many, we propose several 
strategies for efficiently finding the globally optimal solution with 
the HS approach.

3.1. Take-one strategy for a fast convergence to globally optimal 
solution

We consider an extreme case of solutions in the HM, referred 
to as extreme HM. Assume that we have reached suboptimal solu-
tions in the HM being

HM =

⎡
⎢⎢⎢⎣

X1

X2

...

XHMS

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y1
1 x∗

2 . . . x∗
HMS

x∗
1 y2

2 . . . x∗
HMS

...
...

...
...

x∗
1 x∗

2 . . . yHMS
HMS

. . . x∗
D

. . . x∗
D

...
...

. . . x∗
D

⎤
⎥⎥⎥⎥⎦

where X∗ = (x∗
1, x

∗
2, . . . , x

∗
D) is the globally optimal solution. We 

need adjust only one dimension such that the new solution is ex-
actly the globally optimal solution.

We now consider two strategies to see which one is more prob-
able (in probability) to reach to exactly the globally optimal so-
lution directly, as the dimensionality D increases. The probability 
that the new solution Xnew is exactly the globally optimal solution 
X∗ is referred to as success rate here.

The strategies are take-one and take-all respectively. In the 
take-one search, the new solution is simply a solution in HM 
(referred to as the base solution) with an exception of its some 
dimension whose value takes the value of that dimension of any 
solutions in the HM; in the take-all search the new solution is gen-
erated with its each dimension taking the value of that dimension 
of any solutions in the HM. Detail of the two strategies is below.
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