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In this paper, we propose Unbiased Weighted Mean Filter (UWMF) for removing high-density impulse 
noise. Asymmetric distribution of corrupted pixels in the filtering window creates a spatial-bias towards 
the center of uncorrupted pixels. UWMF eliminates this bias by recalibrating the contribution factor 
(weight) of each uncorrupted pixel in such a way that the center shifts back to the center of the filtering 
window. The restoration process involves three sequential operations while convolving a filtering window 
over a contaminated image. Noise is detected, weights are recalibrated and the new intensity value is 
replaced by weighted mean using the recalibrated weights. Compared to the state-of-the-art impulse 
noise removal methods, UWMF provides superior performance, without requiring a fine-tuning for its 
parameters, in terms of both objective measurements and subjective assessments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Contamination of digital images by impulse noise often occurs 
during image acquisition or transmission. Two types of impulse 
noise are random-valued and fixed-valued (salt-and-pepper). The 
former type corrupts a pixel with an intensity value within a range 
in an additive manner [1]. The latter type — salt-and-pepper noise 
manifests itself with the highest or the lowest possible intensity 
value on a given pixel. This study focuses on fixed-valued impulse 
noise. Human visual system is sensitive to the presence of im-
pulse noise [2]. Furthermore, such contamination may decrease 
the suitability of digital images for computer vision applications 
such as motion detection [3–5], surveillance systems [6], image 
and video encoding/compression [7,8] due to undesirable high-
frequency components [9]. Therefore, it is vital to restore these 
images for visual applications and further processing. Various fil-
ters have been proposed to remove impulse noise over the years. 
Amongst them, Standard Median Filter is a well-known method 
that is widely used due to its fine detail preservation capabilities. 
However, its performance declines at higher noise densities [10]. 
This situation led researchers to concentrate on improving median-
based filters [2,9–18]. Similarly, many mean-based filters have 
been shown to be successful for removing impulse noise [19–22]. 
Moreover, switching-based filters are introduced with the intuition 
of applying filter to those pixels that are corrupted. In these meth-
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ods, corrupt pixels are detected before proceeding into filtering 
stage [2,9,11,12,20,23,24].

In [21], authors propose a method named Adaptive Weighted 
Mean Filter (AWMF). AWMF operates in a similar way to Adaptive 
Median Filter (AMF) [16]. It adaptively increases the filtering win-
dow size until two successive windows have equal minimum and 
maximum value. Then, each pixel is assigned to a binary weight (0 
or 1) depending on minimum and maximum intensity value in the 
filtering window and the central pixel is replaced with weighted 
mean.

Interpolation-Based Impulse Noise Removal (IBINR) is proposed 
in [19]. IBINR assigns weights to uncorrupted pixels in the filtering 
window based on their Euclidean distance to center, then it re-
places central pixel with a weighted mean. This method provides 
robust restoration performance while maintaining computational 
efficiency.

Various improvements over Boundary Discriminative Noise De-
tection (BDND) filtering stage are proposed in [9]. In their efforts to 
improve the filtering stage of BDND, the authors focus on expan-
sion condition of the filtering window and incorporation of spatial 
distance.

Cloud Model Filter (CMF), proposed by Zhou [20], employs 
Cloud Model [25] for detection stage. It exploits randomness and 
fuzziness involved in impulse noise. A weighted fuzzy mean filter 
is used in filtering stage. CMF successfully detects impulse noise 
with total misclassification rate less than 0.01% at higher noise 
densities while its detection rate diminishes slightly at lower noise 
densities.
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In [10], authors proposed a variant of median filter, namely, 
Modified Decision Based Unsymmetric Trimmed Median Filter 
(MDBUTMF). MDBUTMF ignores corrupt pixels while ordering in-
tensity values in the filtering window. The central pixel is replaced 
by the median value of the trimmed pixel set.

Another switching-based adaptive median filter is called Noise 
Adaptive Fuzzy Switching Median Filter (NAFSMF) [12]. NAFSMF 
expands filtering window while searching for uncorrupted pixels. 
Upon finding enough uncorrupted pixels, median in current win-
dow is selected for restoration. However, expansion stops on a 
predetermined window size if no uncorrupted pixels are found. In 
such a case, a new 3 × 3 window is imposed and median of the 
first four pixels in the upper-left region is selected for restoration.

Ng and Ma [11] incorporated Noise Adaptive Soft-Switching 
Median Filter (NASMF) [2] with Boundary Discriminative Noise 
Detection (BDND). BDND forms three intensity clusters as lower 
intensity impulse noise, uncorrupted pixels and higher intensity 
impulse noise by calculating lower and higher intensity bound-
ary values using intensity differences between pixels. In filtering 
stage, a modified version of NASMF is used. BDND shows robust 
detection performance even at high noise densities with total mis-
classification rate less than 1%.

Noise Adaptive Soft-Switching Median Filter (NASMF) [2] differ-
entiates pixels into four classes as uncorrupted pixels, isolated im-
pulse noise, non-isolated impulse noise and edge pixels, using local 
and global pixel statistics. Different filtering methods are applied 
for different classes. Isolated and non-isolated impulse noise are 
restored with SMF; edge pixels are restored with a fuzzy weighted 
median filter. NASMF performs well with lower noise densities. 
However, at higher noise densities, it fails to restore fine details 
due to incorrect classification of pixels.

In many filters, a selection of uncorrupted pixels is applied 
before or during filtering stage. The selection process does not con-
sider the positional distribution of corrupted pixels in the filtering 
window. When these pixels are distributed asymmetrically, such 
approaches will lead to a spatial-bias towards the center of uncor-
rupted pixels. In this paper, we propose Unbiased Weighted Mean 
Filter (UWMF) to eliminate this bias by recalibrating the contribu-
tion factor (weight) of uncorrupted pixels. Experiments show that 
the proposed method has superior results in terms of both ob-
jective measurements and subjective assessments. The rest of the 
paper is organized as follows. In Section 2, the rationale behind 
the proposed method and further details are given. In Section 3, 
simulation results are rendered. Finally, the paper is concluded in 
Section 4.

2. Unbiased weighted mean filter

Unbiased Weighted Mean Filter performs three operations in 
a sequential manner while convolving a filtering window over a 
contaminated image. These are noise detection, spatial-bias elim-
ination and noise removal by calculation and assignment of new 
intensity values to the corrupted pixels. However, in order for 
weight recalibration to take place, a priori distribution of weights 
is required. In subsequent subsections, these three procedures will 
be explained.

2.1. Noise detection

Unbiased Weighted Mean Filter employs a simple noise detec-
tion procedure similar to many methods in the literature [10,19,
26–28]. Impulsive interferences to image signal produce extreme 
intensities. Therefore, impulse noise can be defined as follows

cx,y =

⎧⎪⎨
⎪⎩

imin, q

imax, q

ox,y, 1 − (2q)

(1)

where o is the original image, c is the contaminated image and 
(x, y) represents a pixel coordinate. q represents the probability of 
corruption for extrema (imin and imax). Using (1), a pixel is iden-
tified as corrupted if it has the lowest (imin) or the highest (imax) 
intensity value. The lowest and the highest intensity values for an 
8-bit grayscale image are 0 and 255, respectively. In a more rigor-
ous sense, the set of corrupted pixels (Iη) in the filtering window 
is defined as follows

I0 = {(x, y) | ix,y = 0 ∧ ix,y ∈ I}
I255 = {(x, y) | ix,y = 255 ∧ ix,y ∈ I}
Iη = I0 ∪ I255 (2)

I represents all pixels in the filtering window where − wsize−1
2 ≤

x, y ≤ wsize−1
2 and wsize is the size of filtering window. ix,y is 

the intensity value of the pixel at coordinates (x, y) in the filter-
ing window. I0 represents the set of pixels with intensity value 0 
(black) and I255 represents the set of pixels with intensity value 
255 (white).

2.2. Elimination of the spatial-bias

Spatial-bias elimination takes place after noise detection. This 
operation requires a weight distribution. Spatial-bias is eliminated 
by analyzing the distribution of corrupted pixels in the filtering 
window and recalibrating the weights accordingly.

2.2.1. Weight distribution
The proposed solution to spatial-bias elimination requires pres-

ence of weights. The first step of spatial-bias elimination is to dis-
tribute weights based on their distance to the central pixel which 
are calculated as

wx,y = [�((x, y), (0,0))]−k (3)

where �(·) is a function calculating the distance between a loca-
tion (x, y) and the central location of the filtering window. k is a 
parameter of the system which controls the mitigation of weights 
based on the distance to the central pixel. The pixels that are fur-
ther away relative to the center of the filtering window are less 
spatially-correlated than those that are close. Thus, it is important 
to diminish contribution of distant pixels. In this study, we have 
used Minkowski Distance defined as

DMinkowski(Q , R) =
(

L∑
l=1

|Q l − Rl|p

)1/p

(4)

where p is a parameter of distance metric and L is the number 
of dimensions. When p is 1 or 2, it corresponds to Manhattan or 
Euclidean Distances, respectively. These two values of p are found 
to be yielding the highest restoration performance (explained in 
Section 3.3). According to the empirical results, the value of k
is estimated to be between 4 and 6; and p to be 1 (Manhattan 
Distance). However, the effect of changing values of p is not sig-
nificant in terms of restoration quality. Details of parameter effects 
are presented under Section 3.3. The distributed weights are used 
for recalibration, however, their values need not to be changed dur-
ing convolution and all parameters (p, k, and wsize) are known 
a priori. Therefore, it is suggested to calculate weights and store 
them in a matrix, in order to be used later for recalibration during 
convolution.

2.2.2. Spatial-bias
It is essential to understand the nature of the spatial-bias and 

why it needs to be eliminated. While estimating the original value 
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