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We examine nonstationary signals within the framework of compressive sensing and sparse reconstruc-
tion. Most of these signals, which arise in numerous applications, exhibit small relative occupancy in the 
time–frequency domain, casting them as sparse in a joint-variable representation. We present two general 
approaches to incorporate sparsity into time–frequency analysis, leading to what we refer to as sparsity-
aware quadratic time–frequency distributions. Both approaches exploit time–frequency sparsity under full 
data and compressed observations. In the first approach, quadratic time–frequency distributions are de-
rived based on optimal multi-task kernel design. In this case, sparseness in the time–frequency domain 
presents itself as a new design task, adding to the two fundamental tasks of auto-term preservation 
and cross-term suppression. In the second approach, sparse reconstruction is used, in lieu of the Fourier 
transform, to obtain quadratic time–frequency distributions from compressed measurements observed in 
the time domain or the joint-variable domain. It is shown that multiple measurement vector methods 
and block sparsity techniques play a fundamental role in improving signal local frequency representa-
tions. Examples of both approaches are provided. Analysis is supported by results based on simulated 
data, electromagnetic modeled data, and real Doppler and micro-Doppler data measurements of radar 
returns associated with human motions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This review article deals with signal time–frequency (TF) sig-
nature reconstruction from complete and incomplete data. Incom-
plete data include missing observations or random sampling, and 
can be due to fading channels, discarding noisy measurements, 
hardware simplification, sampling frequency limitations, logistical 
restrictions on data collections and storage, or a result of co-
existence between wireless communication systems and systems 
performing active or passive sensing [1–3]. The article groups re-
cent developments and potential future advances in sparse non-
stationary signal analysis into two fundamental approaches, both 
exploiting signal sparseness over the joint-variable TF domain.

There are numerous applications where nonstationary signals 
are present at the transmitter, receiver, or both. This covers as-
tronomical, biological and man-made signals and spans ubiqui-
tous active and passive sensing modalities, including sonar, radar, 
and ultrasound [1,4–6]. Nonstationary signals, especially frequency 
modulated (FM) signals, are typically employed by smart jam-
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ming [7,8], and also characterize speech and electromyographic 
recordings [9,10]. In radar and sonar systems, the Doppler fre-
quency is used to estimate the radial velocity of a target which 
can be a constant, linear, or nonlinear function of time. The ro-
tation, vibration, and coning motion of a target or its parts may 
produce periodic Doppler modulations of the received signal, re-
ferred to as the micro-Doppler effect, which are best revealed in 
the time–frequency domain [11–17].

Unlike sinusoidal signals, FM signals are wideband, that is, the 
signals occupy the entire bandwidth under Nyquist sampling. In 
this respect, they are not globally sparse when represented in the 
frequency domain. However, owing to their power concentration in 
frequency at the different time instants, these signals are instanta-
neously narrowband. In this regard, the time–frequency signatures 
of a large class of nonstationary signals occupy small regions in the 
TF domain. This property casts the signals as sparse in the joint-
variable representations [18] and has recently invited sparse signal 
reconstruction and CS techniques [19–23] to play an important 
role in TF signal analysis and processing [24–28]. Opposite to sta-
tionary signals, where frequency sparsity can be assumed globally, 
local frequency reconstruction of a single- or a multi-component 
nonstationary signal is deemed to outperform the signal global re-
constructions in which all data measurements are considered.

The objectives of recent research activities in sparsity-aware 
quadratic time–frequency distributions (SA-QTFDs) is to 1) utilize 
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the signal joint-variable domain sparsity, 2) combat the adverse ef-
fect of missing samples on time–frequency signal representations, 
and 3) define effective sampling and data collection strategies for 
signals with time-varying spectral characteristics. Meeting these 
objectives will lead to fast data acquisition, improved signal and 
target detection and classification in radar, communications, sonar, 
and satellite navigation. Further, the research in SA-QTFDs bene-
fits other important emerging applications in the area of big data 
where sparsity of the joint-variable domain provides a vehicle for 
reduction in data storage as well as efficiency in data recovery.

QTFDs seek to combine the instantaneous power and spectral 
energy density of the signal into one TF domain representation. 
However, missing samples and randomly under-sampled nonsta-
tionary signals give rise to artifacts that spread over both the 
TF domain and the ambiguity domain, which are related by the 
two-dimensional Fourier transform [29,30]. These artifacts obscure 
the signal components and their instantaneous frequencies (IFs). 
Efforts and attempts to use traditional TF smoothing kernels for re-
ducing missing samples artifacts proved ineffective and unsuccess-
ful. This is because the ambiguity-domain low-pass filter charac-
teristics, underlying signal-independent kernels which are applied 
to mitigate the signal cross-terms [31–36], offer limited benefits 
against an exceedingly noisy ambiguity function (AF). On the other 
hand, missing samples can misguide the signal-dependent adap-
tive kernels [37] into capturing the wrong areas of the AF. These 
difficulties and inabilities to apply QTFDs in their known nomi-
nal forms call for new approaches wherein sparsity can be either 
leveraged in TF kernel design or directly used in constrained opti-
mization problems for TF signature reconstructions.

Compressed sensing (CS) has been studied extensively in many 
applications, including radar [38–43]. In CS, a sparse representa-
tion of a signal is projected onto a much smaller measurement 
space. This leads, in general, to decreasing the data-acquisition 
requirements from the time, logistic, and hardware complexity per-
spectives. It is then possible to record a small number of linear 
measurements of a signal and, from those measurements, recon-
struct the complete set of all samples that can be recorded con-
ventionally. The required number of observations is slightly higher 
than the signal sparsity level, but far fewer than the signal ambi-
ent dimension. Although vastly applied in many applications, little 
consideration has been given to sparse reconstruction of nonsta-
tionary signals.

We consider the problem of SA-QTFDs using complete and com-
pressed observations, following two general approaches, both are 
important and key to the understanding of the offerings of sparsity 
in enhancing nonstationary signal analysis. In the first approach, 
new QTFDs, within Cohen’s class, are introduced through a novel 
kernel design which has sparsity in the TF domain as one of its 
primary goals. These multi-task kernels combine low-pass filter-
ing for reduced interference distributions (RIDs), with sparsity in 
the TF domain, yielding robustness to missing data. The result is 
a superior distribution over that obtained through conventional 
data-independent or data-dependent kernel design. Different spar-
sity measures applied in the TF domain can be used to solve for 
the optimum multi-task TF kernels.

In the second approach, one departs from Cohen’s class and re-
places the Fourier transform (FT), which connects time, time-lag, 
and ambiguity domains to the TF domain, by a corresponding lin-
ear dictionary and solves the respective sparse reconstruction and 
optimization problem. This approach underlines most of the recent 
contributions of SA-QTFDs. The work in [18,25,44,45] performs 
sparse reconstructions from windowed data in the time domain 
and, in this respect, it parallels the short-time Fourier transform 
(STFT) and the spectrogram. Sinusoidal and chirp atoms have both 
been used within each window to form the dictionary matrix with 
the latter outperforming the former due to its better approxima-

tion of the local frequency behavior of most FM signals. Aside 
from the time domain, sparse reconstructions are carried out in 
[24] from compressed observations in the ambiguity domain, and 
in [29] from the instantaneous autocorrelation function (IAF) do-
main, i.e., the time-lag domain. The difference between the am-
biguity domain and the IAF domain is that missing samples in 
time lead to missing samples in the IAF, but not in the AF, which 
only becomes noisy. Additionally, reconstruction from the IAF do-
main allows the use of the dictionary matrix with a reduced size 
and enables exploitation of local sparsity over a short time period. 
A clear and fundamental role of a multiple measurement vector 
(MMV) model, block sparsity, and multi-task Bayesian compressive 
sensing (BCS) techniques in revealing the signal local power behav-
ior was established in [46]. The MMV model can arise from using 
multiple data windows [47] reminiscent of the multiple window 
spectrogram [48–55]. BCS enables, through the priors, the incorpo-
ration of the contiguity property of most TF signatures and thus 
enhances sparse optimization solutions. It should be noted that, 
in the above two approaches, we deal with complex data whereas 
a missing sample implies that both the sample’s real and imag-
inary parts are unavailable. Further, missing samples are drawn 
from a uniform distribution. As such, data with contiguous missing 
samples are unlikely to occur neither are they enforced. Reference 
[56] addresses this case and presents solutions based on empirical 
mode decomposition.

A hybrid approach combining the aforementioned two ap-
proaches can also be used. In this case, sparsity-aware TF kernels 
are designed and applied to the AF similar to the first approach. 
A sparsity measure is then used to produce a signal power distri-
bution in the TF domain. In this respect, sparsity is used twice, in 
kernel design as well as in obtaining QTFDs from the ambiguity 
domain.

The above two approaches and their hybrid schemes consti-
tute a nonparametric perspective to SA-QTFDs. There is also a 
parametric dictionary based approach which is directly applied to 
the time-domain data to estimate the signal parameters [27]. This 
parametric perspective is justified by the need, in many applica-
tions, to perform classification based on features related to the 
estimated signal parameters. However, this approach specifically 
deals with nonstationary signals with a priori known structures, 
such as chirps and sinusoidal FM signals. As such, it works well 
when there is a good match between the assumed and the actual 
signal characteristics, but remains sensitive to deviations from the 
assumed model.

This paper also considers interpolation as a method to deal 
with missing data and as an alternative to the above CS ap-
proaches. Upon obtaining the interpolated data, one can then pro-
ceed with the computation of TF distributions. Since missing data 
samples in time introduce missing samples in the time-lag do-
main, interpolation can be performed in either the time or the 
time-lag domain. It is shown in [57] that interpolation of the 
IAF outperforms data interpolation in time, as it acts on reducing 
cross-terms through its underlying low-pass filter characteristics. 
As such, it provides a better approximation of the TF signature 
when the complete data is considered. In this respect, IAF inter-
polation is better suited for QTFDs even though it exhibits more 
missing samples than those originally occurring in time. We com-
pare QTFDs with and without data interpolation and contrast their 
performance with sparse signal reconstruction.

In addition to deterministic signals, QTFDs were used in the 
past to estimate the time-varying spectrum of nonstationary ran-
dom processes [58–60]. When dealing with underspread nonsta-
tionary random processes, compressive sensing techniques have 
been recently applied to estimate the minimum variance spec-
trum [61]. This work parallels that in [24] for deterministic sig-
nals, but views the applied kernel and compressed observations in 
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