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a b s t r a c t

In recent years, arrays of extracellular electrodes have been developed and manufactured to record
simultaneously from hundreds of electrodes packed with a high density. These recordings should allow
neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these elec-
trodes, with the help of signal processing algorithms. Algorithms need to solve a source separation prob-
lem, also known as spike sorting. However, these new devices challenge the classical way to do spike
sorting. Here we review different methods that have been developed to sort spikes from these large-
scale recordings. We describe the common properties of these algorithms, as well as their main differ-
ences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms.

� 2017 Published by Elsevier Ltd.
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1. Introduction

Progress in neuroscience relies to a large extent on the ability to
record simultaneously from large populations of cells, in order to
understand how information is represented among neurons. One
of the most popular techniques to measure such an activity is
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the use of arrays of extracellular electrodes. With these devices,
each electrode records the extracellular field in its vicinity and
can detect the action potentials emitted by the neighboring neu-
rons. In contrast to intracellular recording, those extracellular
recordings do not give a direct access to the neuronal activity:
one needs to process the recorded signals to extract the spikes
emitted by the different cells around the electrode. This process
is termed spike sorting, and many algorithms have been suggested
to do it efficiently (see Lewicki (1998) or Rey et al. (2015) for a
review).

The first extracellular recordings were performed with a single
electrode, and could only give access to 3-5 neurons (Gerstein and
Clark, 1964). A recent study (Pedreira et al., 2012) highlighted that
the maximal number of accessible neurons should lie between 8
and 10 in that case. Over the last decades, there has been a strong
effort to increase the number of electrodes, and therefore the num-
ber of recorded neurons. Spike sorting algorithms had to be
adapted to process this increasingly large amount of data. At first,
electrodes were spaced by hundreds of microns such that the spike
of one cell could only be detected on a single electrode (Jones et al.,
1992; Shoham et al., 2003). In that case, spike sorting on a large
amount of electrodes could simply be done by processing each
electrode independently. The parallelization of the problem for
large amount of independent electrodes was relatively easy to
address.

However, devices where electrodes are packed with a high
density have also been developed. The spacing between electrodes
is much smaller (tens of microns). As a consequence, a spike from a
single cell can be detected on several electrodes. Conversely, each
electrode will detect the activity of many cells, a property already
encountered in the case of single electrode. This increased density
helps a lot to resolve single cells (Gray et al., 1995; Franke
et al., 2015a), but electrode signals could not be processed
independently. Spike sorting algorithms had to be adapted to this
new type of data. While for small numbers of electrodes (e.g.
tetrodes), methods that could be seen as adaptations of single
electrode sorting worked very well (McNaughton et al., 1983;
Harris et al., 2000; Gao et al., 2012), this is not the case with new
devices designed with hundreds of electrodes all densely packed.
CMOS-based devices with thousands of electrodes have been
tested and are now frequently used (Berdondini et al., 2005;
Fiscella et al., 2012; Müller et al., 2015; Hilgen et al., 2016), calling
for new algorithmic methods, largely different from the usual
sorting methods.

Here we review the different spike sorting algorithms that
have been proposed to process recordings from these novel
high-density devices. We will first explain the limitations of clas-
sical spike sorting approaches to process these large-scale, dense
recordings. Then, we will outline the main changes introduced
by these new algorithms compared to classical spike sorting
approaches. We will emphasize that most of these new methods
follow the same global strategy, although they have been devel-
oped independently by different groups. Therefore, we will outline
the common properties shared by these algorithms, before
explaining and discussing their main differences. Finally, we will
discuss the issues that still need to be resolved by future spike
sorting algorithms.

2. The challenge posed by large-scale multi-electrode
recordings to classical approaches

Most of the classical approaches to spike sorting can be decom-
posed in two main steps. First, some specific features of the spike
waveforms are extracted from the raw data. This allows each spike
to be characterized by a small set of numbers/features. Using these

features, each spike can now be seen as a point in a low dimension
space, and the second step consists in clustering all the points in
this reduced space.

For the first step, earliest methods only extracted the spike
amplitude (Hubel, 1957), and width (Meister et al., 1994) of each
spike. More recently, some methods use the full waveform directly
when the number of electrodes remains small (Pouzat et al., 2002).
Another standard technique is to project each waveform on a set of
basis functions (Litke et al., 2004; Quiroga et al., 2004), that are
either found by performing a principal component analysis (PCA)
on the entire set of waveforms (Egert et al., 2002; Pouzat et al.,
2002; Einevoll et al., 2012; Swindale and Spacek, 2015), or by
choosing a wavelet basis (Letelier and Weber, 2000; Hulata et al.,
2002; Quiroga et al., 2004). For a comparison between PCA and
wavelet based analysis, see Pavlov et al. (2007). Note that the
two can be combined (Bestel et al., 2012).

Once the dimensionality has been reduced, to tackle the prob-
lem of the clustering step, several approaches have been used,
but the most standard approach is to fit the clusters with a mixture
of Gaussians (Wood et al., 2004; Rossant et al., 2016; Kadir et al.,
2014). However, one could also find in the literature approaches
such as paramagnetic clustering (Quiroga et al., 2004), mean-
shift clustering (Swindale and Spacek, 2014) or even k-means clus-
tering (Atiya, 1992; Chah et al., 2011). Another interesting
approach is to consider the most consensual clustering across an
ensemble of k-means solutions (Fournier et al., 2016).

Not all standard methods strictly follow this workflow. For
example, linear filtering is an alternative approach which identifies
the optimal linear filter to distinguish one signal, of unknown tem-
poral position but of known waveform, from a finite number of
other signals of known waveforms, observed on noisy electrodes.
This approach was first proposed by Roberts and Hartline (1975),
then by Gozani and Miller (1994) and more recently by Franke
et al. (2010). This method is similar to template matching
approaches that we will describe later. An alternative approach is
independent component analysis (ICA) where the first step demix
blindly the data and extract the individual source signals from
which spikes are identified (Takahashi et al., 2003; Brown et al.,
2001; Jäckel et al., 2012). Note that variants, such as the convolu-
tional independent component analysis (cICA) of Leibig et al.
(2016), has been developed. However, there is no guarantee that
the independent components found by those algorithms are
indeed isolated neurons.

While all of these methods can be successful when one elec-
trode captures the signals from a only few cells, and when one cell
is only recorded by one or a small number of electrodes, it is not
trivial to scale them up to process a large number of densely
packed electrodes. In recordings performed by large and dense
multi-electrode arrays, the spike waveforms live in a high dimen-
sional space, and this makes the clustering challenging. We will
review below some suggested improvements to enable clustering
on a large number of electrodes.

Finally, a more fundamental problem with clustering-based
approach is that the extraction of features from one spike can
be distorted by the presence of other spikes nearby. As a conse-
quence, most of the overlapping spikes are not captured by
clustering approaches, because they correspond to points in the
feature space that are far from the centers of the corresponding
clusters. This is a major challenge for clustering techniques
(Bar-Gad et al., 2001), that we will explain in more details below.
In large scale and dense multi-electrode recordings, overlapping
spikes become the rule rather than the exception. Solving this
issue is one of the motivation behind new algorithms, based on
template matching, that we will review and discuss in a second
part.
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