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a b s t r a c t

This study explores the feasibility of stochastic neuron simulation in digital systems (FPGA), which real-
izes an implementation of a two-dimensional neuron model. The stochasticity is added by a source of
current noise in the silicon neuron using an Ornstein–Uhlenbeck process. This approach uses digital com-
putation to emulate individual neuron behavior using fixed point arithmetic operation. The neuron mod-
el’s computations are performed in arithmetic pipelines. It was designed in VHDL language and simulated
prior to mapping in the FPGA. The experimental results confirmed the validity of the developed stochastic
FPGA implementation, which makes the implementation of the silicon neuron more biologically plausible
for future hybrid experiments.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Biological neurons are characterized by a high degree of irregu-
larity. The spike train of individual neurons is far from being peri-
odic. Neurons have been found noisy both in the generation of
spikes and in the transmission of synaptic signals. Many ‘in vivo’
experiments of neuronal activity show noisy behaviors and sub-
threshold membrane potential oscillations. The noise comes from
intrinsic source that generates stochastic behavior on the level of
the neuronal dynamics, and extrinsic sources that arise from net-
work effects and in the transmission of synaptic signals
(Manwani and Koch, 1999). In addition a source of noise, which
is omnipresent, is the thermal noise. As the noise affects neural
computation, there is a long tradition of theoretical studies aimed
at understanding the impact of noise on the integrative properties
of neurons (Stein et al., 2005). A large number of theoretical studies
have designed simplified models to study the effect of noise in neu-
rons. Usually the synaptic activity is modeled by a source of cur-
rent noise in the neuron (Levitan et al., 1968; Tuckwell, 1988) or
by fluctuating conductance (Destexhe et al., 2001), and thus the
neuron membrane potential is described by a stochastic process.
As results, the neuronal dynamics are modeled by stochastic differ-
ential equations. Many studies have provided evidence that this

stochasticity is crucial for the overall dynamic behavior of neurons
(Chow and White, 1996; Schneidman et al., 1998; White et al.,
2000). The noise plays a beneficial role at least by inducing neu-
ronal variability (Ermentrout et al., 2008), tuning the degree of syn-
chrony between neurons (Casado, 2003; Béhuret et al., 2015) and
enhancing the sensitivity of neurons to environmental stimuli
(Wiesenfeld and Moss, 1995). The effect on synchrony could fur-
ther relate to neural disorders such as Parkinson’s disease
(Hammond et al., 2007). Moreover, studies on spinal nerve injury
have provided evidence that in the presence of noise, the recorded
membrane potential given by the dorsal root ganglia (DRG) neu-
ron, exhibits high frequency subthreshold oscillations combined
with a repetitive spiking or bursting that play a role in the Neu-
rophatic Pain (Amir et al., 1999; Liu et al., 2000).

The exploration of noise and its effect on neurons and networks
is a fascinating subject, which can have far-reaching consequences.

Understanding the effect of the noise is thus crucial both for
computational neuroscience and for improving the treatments to
these neural diseases. Nowadays, two approaches coexist in the
neuromorphic design community: neuro-inspired methods, and
neuromimetic methods. Neuro-inspired designers develop new
solutions to solve engineering issues. They use biological princi-
ples, taking various approximations of nature, with the view to
building more efficient systems. The second approach in the neuro-
morphic community concerns neuromimetic systems, which imi-
tate more precisely the activity of biological cells and could
replace the living part. A neuromorphic system facilitates the
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building of a hybrid network incorporating both silicon and biolog-
ical neurons. This technique consists of connecting artificial and
biological neurons to create a real-time closed-loop (Sorensen
et al., 2004). Many research groups have been designing and
exploiting neuromimetic silicon neurons that could be digital, ana-
log, or mixed, in collaboration with neuroscientists (Levi et al.,
2008; Yu and Cauwenberghs, 2010; Indiveri et al., 2011; Grassia
et al., 2011; Brink et al., 2013; Kohno and Aihara, 2014; Kohno
et al., 2016; Nanami and Kohno, 2016). Recently, FPGAs have been
used to build spiking neuronal networks (Ambroise et al., 2013;
Bonabi et al., 2014). Digital FPGA implementations offer a signifi-
cant speedup over software designs, as well as size, weight, and
power efficiency. Compared to analog VLSI, digital FPGAs designs
are stable, scalable, and flexible in design alterations. Previous
works have already implemented Neuron on FPGA (Cassidy and
Andreou, 2008; Cassidy et al., 2013). However, those designs have
been realized for computation purposes without taking into
account stochasticity. In the work of Bonabi et al., 2014 where dig-
ital implementation of the Hodgkin-Huxley neuron model (1952)
has been done, a random term that creates small differences
between neurons, was added as noise term to the input current
of each neuron in order to add the effect of stochastic factors.
The noises are generated from a zero mean Gaussian distribution
for each Hodgkin-Huxley neuron. Because it uses a ROM table for
random number generation, it requires a large amount of memory
resources.

In this work we explore the feasibility of stochastic neuron sim-
ulation in digital systems (FPGA), which realizes an implementa-
tion of the quartic neuron model (Touboul, 2008) that is a two-
dimensional neuron model with a richer bifurcation diagram than
Izhikevich model (Izhikevich, 2003). Furthermore, the noises are
generated with an online generation approach that reduces the
resource consumption into the FPGA.

2. Methods

2.1. Choice and presentation of the neuron model

A biological neuron model (also known as a spiking neuron
model) is a mathematical description of the properties of nerve
cells, or neurons, which is designed to accurately describe and pre-
dict biological processes. Models that describe the membrane
potential of a neuron by a single variable and ignore its spatial vari-
ation are called single-compartment models. In this sub-class of
models, the rich and complex dynamics of real neurons can be
reproduced quite accurately by models that include aspects of
ionic conductances as proposed by Hodgkin and Huxley (1952)
with a four-dimensional set of equations that describes the ionic
conductance’s dynamics of the giant axon. Several simple two-
dimensional models have been recently introduced (Izhikevich,
2003; Kohno and Aihara, 2014; Kohno et al., 2016; Nanami and
Kohno, 2016).

They propose a trade-off between simplicity of equations and
variation of dynamical behavior, each of them is optimized to
specific activities to be effectively simulated. The choice of model
was based on two criteria: the family of neurons able to be repro-
duced and the number of equations. Among these models, the
quartic neuron model (Touboul, 2008) can reproduce biological
behaviors observed experimentally and also can exhibit sustained
sub-threshold oscillations. In a previous work (Grassia et al.,
2014), we proposed a digital hardware implementation of the
quartic neuron model, taking into account biological real time,
which can emulate the electrophysiological activities in various
types of cortical neurons with diversity similar to that of neuronal
cells.

In the present work we propose a stochastic digital hardware
implementation of the quartic neuron model in which the stochas-
ticity is added by a source of current noise in the neuron model
using an Ornstein–Uhlenbeck process, which makes the digital
hardware implementation more biologically plausible. The imple-
mentation into the FPGA is done using fixed point arithmetic oper-
ation and taking into account biological time scale.

2.2. Equations and numerical integration of the neuron model

The dynamics of the quartic spiking neuron model are defined
by two coupled differential equations, and a reset condition. This
model is described by two variables, the membrane potential v
and a variable w representing membrane recovery, whose dynam-
ics are governed by the following differential equations:

_v ¼ v4 þ 2av�wþ I
_w ¼ aðbv�wÞ

(
ð1Þ

where I is the synaptic input and a, b are parameters controlling the
dynamical behavior of the neuron model. The neuron emits a spike
when its membrane potential crosses a constant threshold. Let a be
our threshold. When a spike occurs, the membrane potential is
instantaneously reset to some value vr and the variable w is
increased:

If vðt�Þ > a then
vðtÞ ¼ vr

wðtÞ ¼ wðt�Þ þ d

�
ð2Þ

where vr, d are parameters controlling the neuron reset behavior.
In the present work, the stochasticity is added by a source of

current noise in the neuron model. The synaptic current I is mod-
eled by a stochastic process, as explained below, using an Orn-
stein–Uhlenbeck process Xt. The neuron membrane potential is
then described by a stochastic process.

The Ornstein–Uhlenbeck process is a prototype of a noisy relax-
ation process and is an example of a Gaussian process that has a
bounded variance and admits a stationary probability distribution.
The process is stationary, Gaussian and Markovian. It satisfies the
following stochastic differential equation:

dXt ¼ hðl� XtÞdtþrdWt ð3Þ
where l, h > 0, r > 0 are parameters and Wt denotes the Wiener
process.

The parameter l represents the equilibrium or mean value for
the process. The stationary variance is given by:

varðXtÞ ¼ r2

2h
:

This form of current may represent an approximation to that
resulting from the random opening and closing of ion channels
on a neuron’s surface or to randomly occurring synaptic input cur-
rents with exponential decay (Tuckwell et al., 2002). As results, the
neuronal dynamics are modeled by stochastic differential equa-
tions (SDEs). We consider the resulting integrals as Itô-integrals
and use the Euler–Maruyama method (Higham, 2001) for simulat-
ing different realizations of the system. The simulations are carried
out using the MATLAB programming environment. Each equation
defined in the continuous time domain must be mapped to discrete
time for numerical implementation. The Euler–Maruyama method
is a procedure for the approximate numerical solution of SDEs. It is
a simple generalization of the Euler method for ordinary differen-
tial equations to SDEs. The simulation using the forward Euler–
Maruyama only depends on past values of state variables and state
derivatives which is thus an explicit integration algorithm useful
for FPGA implementation.
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