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We present a method to characterize variable thermal regimes in terms of an equivalent or effective
temperature. Our method is based on a first order exponential transformation of a time series of temperatures
to yield an exponentially-weighted mean temperature characteristic of the regime and independent of any
particular species or end point. The resulting effective temperature or exponential mean, 7;, offers an improved
method for summarizing mean temperature where biological response scales exponentially to temperature. The
exponential mean allows growth under varying thermal regimes to be predicted using constant temperature
models and offers a compact descriptor communicating the growth capacity of variable thermal regimes. The
method combines mathematical simplicity with translatability to different Qo values without recourse to the
underlining time series data. It also provides a quantitative baseline that improves on mean temperature by
incorporating the effect of Jensen's inequality and it remains applicable at near zero temperatures where
thermal sums lack accuracy.

1. Introduction

Numerous models have been proposed to describe the temperature
dependence of biological growth under different constant temperature
conditions. However, the ecological application of such models is
hindered by the fact that most real-world thermal regimes are variable
and intrinsically more complex owing to non-linearity in thermal
scaling. The ability to accurately predict growth and development
under conditions of varying temperatures is especially important when
assessing subtle, ecosystem-level effects such as competitive equilibria
and phenological mismatch (Visser and Holleman, 2001; Genner et al.,
2009) that may occur at temperatures below recognizable stress
response thresholds. The ability to characterize temperature variations
in natural thermal regimes is also desirable when considering the
effects of climate change where increases in temperature variation may
cause a greater impact than the changes in mean temperature (Vasseur
et al., 2014).

One of the earliest approaches to predicting growth under varying
thermal regimes involved the method of thermal sums, widely known

as the degree-day method. This method dates to the eighteenth century
and has continued in use, with various modifications, to present
(Neuheimer and Taggart, 2007). The degree day is the sum of the
product of temperature and time and may be applied to predict growth
(the gain in mass with time) or development (progress toward
recognizable morphological stages). Commonly, complete development
occurs for an approximately constant number of degree days Blaxter
(1988).

The degree day method results in a relationship between tempera-
ture and growth that follows a power function whose slope is
asymptotic to the Y-axis at zero degrees. A biological zero parameter
(representing the temperature below which development ceases) is
therefore required to partially overcome this mathematical limitation,
or to accommodate growth with a lower thermal bound at temperatures
greater than zero. Fig. 1 illustrates limitations of the degree day method
compared to an exponential model when applied to a cold-developing
species such as the lake whitefish (Coregonus clupeaformis). In
addition to the problem of a biological zero, only a fraction of the
thermal performance curve occurs at a near-constant number of degree
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Fig. 1. Observed days to median hatch for lake whitefish under constant incubation
temperature (circles, from Brooke, 1975) compared to predicted curves based on DD:
500 degree days, exp: an exponential relationship given by hso=213e 21T (regression
using data from Brooke, 1975), and Lin: a linear relationship given by hso =-13T+155.
Application of a negative biological zero parameter would effectively shift curve DD to the
right but still result in a flatter slope than the observed temperature dependence of
hatching.

days.

An alternative approach is the use of incremental growth-at-
temperature (IGT) to predict total growth either as a continuous
function of time steps (e.g. Alderdice and Velsen, 1978; Katsanevakis
and Verriopoulos, 2006; Thome et al., 2016) or through stage-wise
growth models (e.g. Brooke, 1975; Berlin et al., 1977) that apply
different thermal scaling relationships to different development stages.
In contrast to thermal sums, IGT adds increments of growth over
discrete time steps A#, An, Ats.... at temperatures Tj, T, ... and thus
allows for non-linear temperature dependence of biological growth.
Known as Jensen's inequality (Ruel and Ayres, 1999; Martin and Huey,
2008; Ragland and Kingsolver, 2008), an accelerating thermal depen-
dence causes growth rates under varying temperatures to exceed those
that would be predicted by simply using the mean temperature. IGT is,
to the best of our knowledge, the only existing method for modeling
growth under varying thermal regimes that accounts for Jensen's
inequality. Unfortunately IGT yields a summation of species-specific
growth increments ill-suited for statistical analysis and unwieldy for
the description of the thermal regime being considered.

Jensen's inequality may also be incorporated by transforming a
variable thermal regime to an equivalent or effective temperature
provided that the thermal dependence of growth follows an exponential
relationship. The resulting method has advantages over thermal sums
as a quantitative baseline and it may simultaneously facilitate the
modeling of multiple species interactions while providing a compact,
mathematically convenient, form that facilitates communication and
statistical analysis of temperature-dependent phenomena.

2. Method description and development
Our approach may be summarized as follows:
1) Where biological growth to a consistent and definable end point
(e.g. hatching) under varying temperatures may be described as the
incremental sum of a continuous monotonic function of time-at-
temperature f (T), there exists an equivalent constant temperature,
T, such that Y £ (T) = f(T.,)
Where f(T) is selected to be independent of species-specific
parameters, it may be used to transform a varying thermal regime
to an equivalent constant temperature, T, suitable for application
across a range of taxa, biological processes, and end points

2)

Although f(T) could be any continuous monotonically increasing
equation, we have used a first order exponential relationship because of
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Fig. 2. General shape of the growth-temperature relationship described by the Sharpe-
Schoolfield equation (Sharpe and DeMichele, 1977). For much of the thermal tolerance
range (0—15 °C in the example shown), growth follows an exponential relationship as
described in the Eyring equation.

its mathematical simplicity and well-established mechanistic basis.
Both the Eyring and Sharpe-Schoolfield equations are based on an
exponential relationship between growth and temperature for all
(Eyring) or a portion (Sharpe-Schoolfield) of the thermal domain
(Fig. 2). Where f(T) is an exponential function of T, we show that
Teq takes the form of an exponentially transformed mean 7, .

Clarke and Johnston (1999) analyzed thermal dependence of
resting metabolism for 69 species of teleost fish and found similar
slopes despite significantly different rates of absolute growth. Similar
conclusions were drawn by Gillooly et al. (2001) and Brown et al.
(2004) who proposed a general model relating biological growth to size
and temperature lending support to the hypothesis that the observed
temperature dependency of growth in fish reflects biological processes
common to life in general (Huey and Kingsolver, 2011; Clarke, 2004).
Thus, the exponential scaling of growth to temperature is well
supported by observations across different species and life stages.
However, natural temperature variability may include temperatures
corresponding to a negative slope in the Sharpe-Schoolfield domain,
particularly for insects (Wagner et al., 1984; Régniére et al., 2012).

When considering the time to grow to a definable end point, the
simplest exponential relationship is:

1)

where the time, t;, required to attain a biological end point (for
example hatching), at constant temperature T, is inversely proportional
to an exponential function defined by the exponent —f, and where a is a
species-specific parameter defining the time to reach the specified end
point at a temperature of zero degrees.

We may restate Eq. (1) t, to eliminate the negative sign on f such
that:

th=aell

F) == et
I a (2)
The relationship between the equivalent constant temperature 7,
and the variable values for T may be approximated numerically by:

1 = 1
—ePler = zn —ePTAt
a 0 a

3

where ¢ is the sum of the time increments. Dividing each side by L
removes the species-specific temporal parameter @ and allows for
generalization in the form:
To s — moBT _ 0 T T,

Pt = ZO ePT = (ePMALy + PTiAn + ...ePTiAL,) @)

This can be solved numerically by varying the value for 7, until the
left and right sides of the equation are equal. Alternatively, we may
solve for temperature dependent growth to determine the time, tz,
required to attain a hypothetical reference endpoint. Since we have
assumed that the fractional growth rate, F(t), with variable tempera-
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