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a b s t r a c t

This paper presents a time domain technique for estimating dynamic loads acting on a
structure from strain time response measured at a finite number of optimally placed strain
gages on the structure. The technique utilizes model reduction to obtain precise load
estimates. The structure essentially acts as its own load transducer. The approach is based
on the fact that the strain response of an elastic vibrating system can be expressed as a
linear superposition of its strain modes. Since the strain modes as well as the normal
displacement modes are intrinsic dynamic characteristics of a system, the dynamic loads
exciting a structure are estimated by measuring induced strain fields. The accuracy of
estimated loads is dependent on the placement of gages on the instrumented structure
and the number of retained strain modes from strain modal analysis. A solution procedure
based on the construction of a D-optimal design is implemented to determine the
optimum locations and orientations of strain gages that will provide the most precise load
estimates. A novel approach is proposed which makes use of model reduction technique,
resulting in significant accuracy in the dynamic load estimation. Validation of the
proposed approach through numerical example problems is also presented which reveals
the effectiveness and robustness of the technique even in the presence of errors (noise) in
strain measurements.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of loads acting on a component early in the design process is vital for design optimization and effective
analysis that ensures the structural integrity of the component. Accurate estimation of the loads leads to greater confidence
in numerical simulation such as finite element analysis, which significantly reduces the reliance on expensive and time
consuming experimental testing. In many instances, it is possible to introduce load transducers (load cells) between the
structure and the load transferring body that can directly measure the loads acting on the structure. This method of load
measurement, however, suffers from certain limitations. For instance, introduction of load transducers can change the
system dynamic characteristics leading to inaccurate load estimation. In some applications, the load locations may not be
accessible to facilitate insertion of load transducers to measure the loads being transmitted to the structure. In several other
applications, direct measurement of the excitation loads is not feasible such as aerodynamic loads, seismic excitation, engine
torque pulses, fluid-flow induced forces in piping systems etc.

In many applications, it is possible to measure the response of the structure to the unknown applied loads. The response
may be quantities such as displacements, accelerations, strains etc. that depend on the loads, and their measurement is
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more feasible than measuring the loads directly. A linear relationship (also called the system transfer function) between the
loads to be estimated and the measured quantity can then be employed, along with the principle of superposition, to
estimate the imposed loads. The instrumented structure, thus, behaves as its own load transducer. This class of problems is
known as the “inverse problem”.

Solving the inverse problem may seem to be a straightforward task, but unfortunately this notion is misleading because
the inverse problem tends to be highly ill-conditioned. Historically, the inverse problem pertaining to load identification has
been studied extensively in time, modal and frequency domains. Stevens [1] presented an excellent overview of the
difficulties posed by this class of inverse problems. Kinematic response measurements using displacement transducers and
accelerometers are well established and well documented by Ewins [2]. It has been noted that even very small variations
(noise) in the response measurement can cause large errors in the force estimation. Desanghere [3] was one of the first
researchers to study the load identification problem in frequency domain and attributed the reason for ill-conditioning to a
few dominant elements in the Frequency Response Function (FRF) matrix. Okubo et al. [4] studied the influence of noise
contaminating the measured response as well as the FRF on the accuracy of force estimation and found the inversion
process to be highly ill-posed.

To reduce the effect of noise, Busby and Trujillo [5] cast the load estimation problem as a minimization problem of error
which is defined as the difference between measured structural response and response predicted from the model. They used
dynamic programming to solve this minimization problem resulting in force estimation based on a recursive reformulation
of the governing equations. Hollandsworth and Busby [6] extended the previous study [5] by applying it to actual
experimental measurements. One of the disadvantages of the method is that the amount of computation increases
dramatically as the model order increases.

Starkey and Merrill [7] investigated the reason for the errors encountered in predicting the forces in frequency domain.
They concluded that the ill-conditioned nature of the equation is due to the fact that the FRF matrix is frequently near-
singular. Hansen and Starkey [8], working on a similar line [7], investigated the ill-conditioned nature of the modal model
method. Their study was based on the effect of locations of accelerometer placements on a steel beam on the condition
number of the modal matrix. They concluded that the condition number of the modal matrix can be improved through
proper selection of the accelerometer placement and modes included in the analysis.

Carne et al. [9] proposed a technique referred to as the Sum of Weighted Acceleration Technique (SWAT) that estimates
the input forces by summing the weight-scaled measured accelerations. Genaro and Rade [10] developed a technique based
on identified eigen-solutions to reconstruct input forces from acceleration response. Kammer [11] used acceleration

Nomenclature

n number of degrees of freedom of the system
e number of elements in the FE model of the

structure
c ðc≤eÞ number of elements suitable for

mounting strain gages
g ðg≤cÞ number of strain gages
m ðm≤gÞ number of available/retained modes
fg
⋅

derivative with respect to time
½M� ðn� nÞ mass matrix
½C� ðn� nÞ damping matrix
½K� ðn� nÞ stiffness matrix
½ϕ� ðn� nÞ modal matrix
ff ðtÞg ðn� 1Þ load vector
fxðtÞg ðn� 1Þ displacement vector
fqðtÞg ðn� 1Þ mode participation factor (MPF)
fεðtÞg ðe� 1Þ elemental strain vector
½ψε� ðe� nÞ modal strain matrix
½ ~ψ ε� ðe�mÞ truncated modal strain matrix

retaining only m modes
f ~qðtÞg ðm� 1Þ mode participation factor for

retained modes
½ ~ψ ε�cs ðc�mÞ candidate set; subset of ½ ~ψ ε�
εei experimentally measured strain from gage i
εpi predicted strain for gage i
½ ~~ψ �ε ðg �mÞ a random subset of ½ ~ψ ε�cs
f ~~qðtÞg ðm� 1Þ approximation to f ~qðtÞg

f~εðtÞg ðg � 1Þ strain vector at randomly chosen
locations on the structure

½ε�xyz ð3� 3Þ strain tensor in xyz coordinate system
½T� ð3� 3Þ rotational transformation matrix
½ε�x0y0z0 ð3� 3Þ strain tensor in x0y0z0 coordinate system
½ψε�opt ðg �mÞ optimum subset of ½ ~ψ ε�cs determined

by D-optimal design
fεðtÞgopt ðg � 1Þ strain vector at optimum strain gage

locations
r number of boundary DOFs
b ðr � 1Þ boundary DOFs
i ððn−rÞ � 1Þ internal DOFs
½I� ðr � rÞ identity matrix
p number of Craig–Bampton constrained

normal modes
½ϕ�c ððn−rÞ � pÞ Craig–Bampton constrained

modal matrix
fqðtÞgp ðp� 1Þ MPF of the constrained normal modes
½0� ðr � pÞ zero matrix
½ψ �CB ðn� ðr þ pÞÞ Craig–Bampton

transformation matrix
½M�CB ððr þ pÞ � ðr þ pÞÞ Craig–Bampton reduced

mass matrix
½C�CB ððr þ pÞ � ðr þ pÞÞ Craig–Bampton reduced

damping matrix
½K�CB ððr þ pÞ � ðr þ pÞÞ Craig–Bampton reduced

stiffness matrix
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