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a b s t r a c t

Stochastic Subspace Identification methods have been extensively used for the modal

analysis of mechanical, civil or aeronautical structures for the last ten years. So-called

stabilization diagrams are used, where modal parameters are estimated at successive

model orders, leading to a graphical procedure where the physical modes of the system

are extracted and separated from spurious modes. Recently an uncertainty computation

scheme has been derived for allowing the computation of uncertainty bounds for modal

parameters at some given model order. In this paper, two problems are addressed.

Firstly, a fast computation scheme is proposed reducing the computational burden of the

uncertainty computation scheme by an order of magnitude in the model order compared

to a direct implementation. Secondly, a new algorithm is proposed to derive efficiently

the uncertainty bounds for the estimated modes at all model orders in the stabilization

diagram. It is shown that this new algorithm is both computationally and memory

efficient, reducing the computational burden by two orders of magnitude in the model

order.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Subspace-based system identification methods have proven to be efficient for the identification of linear time-invariant
(LTI) systems, fitting a linear model to input/output or output only measurements taken from a system. An overview of
subspace methods can be found in [1–4]. During the last decade, subspace methods found a special interest in mechanical,
civil and aeronautical engineering for modal analysis, namely the identification of vibration modes (eigenvalues) and mode

shapes (corresponding eigenvectors) of structures. Therefore, identifying an LTI system from measurements is a basic
service in vibration monitoring [see e.g. 5–8]. Having done this allows in particular Finite Element Model updating and
Structural Health Monitoring.

In Operational Modal Analysis, the true model order is hardly known and moreover spurious modes appear in the
estimated models. Usually, an empirical multi-order estimation procedure is used, where the system is identified at
multiple (over-specified) model orders in order to distinguish the true structural modes from spurious modes using the
so-called stabilization diagrams [3,9,10]. There, the true structural modes are assumed to stabilize when the model order
increases and thus can be separated from the spurious modes.
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The estimated modal parameters are afflicted with statistical uncertainty for many reasons, e.g. finite number of data
samples, undefined measurement noises, non-stationary excitations, etc. Then, the system identification algorithms do not
yield the exact system matrices. The statistical uncertainty of the obtained modal parameters at a chosen model order can
be computed from the uncertainty of the system matrices, which depends on the uncertainty in the data due to noise and
turbulence. In [11], it has been shown how uncertainty bounds for modal parameters can be obtained in such a way.
An analysis of this approach and an in depth literature review on the subject is found in [12], where also difficulties in
developing confidence intervals on modal parameters from subspace identification are pointed out.

A direct and naive implementation of the uncertainty computation method in [11] is computationally taxing,
especially when dealing with large sensor sets and a high model order. It has been derived for a fixed given model

order and without giving implementation details. In practice, system identification results are needed at multiple model
orders for the computation of the stabilization diagram. Then, redoing the uncertainty computations at several increasing
model orders yields an expensive computational burden already for moderate system orders. In this paper, efficient
implementations and new algorithms are proposed to solve this problem. Firstly, the algorithm in [11] is mathematically
reformulated, resulting in an efficient implementation with a computational boost in one order of magnitude in the
considered model order compared to the naive implementation. Secondly, a new algorithm is proposed for the
computation of uncertainty bounds at multiple model orders corresponding to all modes in a stabilization diagram. It is
shown how the computation of uncertainty bounds at any lower model orders can be done at a very low cost, when
computations at the maximal desired model order are already done. This results in a decrease of the
computational complexity of two orders of magnitude in the maximal model order. The new schemes are derived for
the computation of uncertainty bounds of natural frequencies, damping ratios and mode shapes successively. The
corresponding computational cost for each part of the computations of the desired modal parameters is addressed and
compared to the naive implementation of the original algorithm in [11].

The paper is organized as follows. In Section 2, some preliminary modeling and the general subspace methods are
given. In Section 3, the principle of the covariance computations is explained. In Section 4, notations and results of the
uncertainty computations obtained in [11] are recalled and reformulated in Section 5 for a fast implementation. The
computational burden of the implementations is analyzed and compared in Section 6. In Section 7 the new multi-order
uncertainty computation algorithms are derived and their merits in terms of computational cost are discussed. A
numerical example is given in Section 8, where the efficiency of the new algorithms is demonstrated.

2. Stochastic subspace identification (SSI)

2.1. Vibration modeling

The behavior of a vibrating structure is described by a continuous-time, time-invariant, linear dynamical system,
modeled by the vector differential system

M €xðtÞþC _xðtÞþKxðtÞ ¼ uðtÞ

yðtÞ ¼ LxðtÞ

(
, ð1Þ

where t denotes continuous time; M, C, K 2 Rd�d are mass, damping, and stiffness matrices, respectively; the (high

Nomenclature

R, C sets of real and complex numbers
R, I real, imaginary part
� Kronecker product
vec column stacking vectorization operator
y Moore–Penrose pseudoinverse
DX first order perturbation on X

J Y ,X sensitivity of vecðYÞ wrt. vecðXÞ
Oð�Þ Landau notation for complexity
A, C system matrices
n system order
nm maximal system order
nd number of modes
nb number of data blocks
r, r0 number of sensors, reference sensors

li eigenvalue of A

fi, wi right and left eigenvector of A

ji mode shape
fi, xi frequency, damping ratio
t sampling time step
H subspace matrix of size ðpþ1Þr � qr0

SH covariance of vecðHÞ
T factor of estimate bSH ¼ TTT

uj, vj, sj left, right singular vector and value of H
O observability matrix
Om, Ok O without last/first block row
S1, S2 selection matrices with S1O¼Om, S2O¼Ok

Ia identity matrix of size a� a

0a,b zero matrix of size a� b

Pa,b permutation, vecðXT
Þ ¼Pa,bvecðXÞ, X 2 Ra,b
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