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This study introduces a research path to obtain alternative trading rules by using nonlinear dynamical 
analysis of stock returns. We examine the daily return data of Istanbul Stock Exchange index and 
Shenzhen Index B-Shares. Both stock returns series are shown to exhibit chaotic behavior and associated 
maximal Lyapunov exponents (LE) are computed. A new prediction method which bases on the properties 
of detected chaotic behavior is proposed to perform one-week out-of-sample prediction of the stock 
returns. Finally we develop a nonlinear model of active trading, in which traders rely only on their 
heterogeneous forecasts of future periods’ maximum and minimum returns. The model motivates active 
trading under chaotic behavior.
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1. Introduction

Economists have long been fascinated by the nature and 
sources of variations in the stock market. By the early 1970s a con-
sensus had emerged among financial economists suggesting that 
stock prices could be well approximated by a random walk model 
and that changes in stock returns were basically unpredictable (see 
Fama [1], recently honored with the Nobel Prize 2013 in Eco-
nomic sciences). The efficient market hypothesis (EMH) evolved 
in the 1960s from the random walk theory of asset prices ad-
vanced by Samuelson [2]. The securities markets were believed to 
be efficient in conveying information about individual stocks and 
about the stock market as a whole. Samuelson showed that in an 
information-based efficient market price changes must be unpre-
dictable, a fact later emphasized by Sims [3]. In a recent study, 
Cochrane ([4]: 389) points out that based on EMH framework, any 
apparent predictability2 is either statistical artifact which quickly 
vanishes out of sample, or cannot be used to device profitable trad-
ing strategies given the incidence of transaction costs. On the other 
hand, some researchers reported systematical departures from the 
EMH (for a detailed survey see Malkiel [5] and Cochrane [4], 
Ch. 20). Thanks to the discovery that less complicated nonlinear 
systems can follow complex and chaotic dynamics, and follow-
ing the studies of Grassberger and Procaccia [6], Brock et al. [7], 
Wolf et al. [8] the systematical departures of market prices, i.e., 
stock prices, exchange rates, oil prices, interest rates, from the 
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EMH were brought to light. The main improvement in the empir-
ical studies comes with the studies of Rosenstein et al. [9] and
Kantz [10] who reduced computational intensity and increased 
test power per required parameters. Thus, researchers increas-
ingly focus on evidence of deterministic chaos in economic and 
financial process even with small data sets (for recent studies see 
[11–14]). We observe that even though the chaotic behavior of 
some well-known stocks are documented by various studies,3 to 
the best of our knowledge there are few studies looking for the 
predictability of the stock returns by using Lyapunov exponents 
(among others see Wang et al. [11]). The first aim of our study 
is to add to this literature. In this context by using the proper-
ties of chaos theory we try to predict the daily return values of 
the Istanbul Stock Exchange (ISE-100) and the Shenzhen stock ex-
change (SZSE) B-shares. These two indexes play important roles 
respectively in the Turkish and Chinese economies, which have 
the highest growth rates at last decade among emerging markets. 
Secondly, to the best of our knowledge, the studies reporting ev-
idence on nonlinear predictability neither examine the sources of 
achieved predictability nor propose a model for active trading rule. 
Exceptionally Brock et al., [21] and Gencay [22] focused on the 
relationship between returns and buy–sell signals. However, both 

3 To conserve space we document some of these studies. Scheinkman and 
LeBaron [15] report the existence of the nonlinearity for U.S. weekly returns on the 
Center for Research in Security Prices (CRSP) value-weighted index, and find rather 
strong evidence of chaos. For U.S. stock-market index Mayfield and Mizrach [16], 
Vaidyanathan and Krehbiel [17] report chaotic behavior. Peters [18] examined the 
S&P 500 and showed strong evidence of chaos in S&P 500 index. For the survey 
of chaos studies on world-wide stock returns please refer to Abhyankar et al. [19]. 
More recently, for the firm level rather than the properties of indices, Hagtvedt [20]
reported evidence of chaos.
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studies are based on the past buy and sell signals of the mov-
ing average (MA) rules, but not on chaotic dynamics. Our study 
also aims to fill this gap by proposing a nonlinear active trading 
rule which motivates active trading even under chaotic behavior of 
stock returns and which can be alternative to the EMH models.

Note that our study presents certain similarities with the stud-
ies of Wang et al. [11], Caglar et al. [13] and Ou and Lai [23]
from various respects. Based on the algorithm proposed by Grass-
berger and Procaccia [6] to compute correlation dimension, Caglar 
et al. [13] showed that over the period from July 1987 to Jan-
uary 2006 the time series of Istanbul Stock Exchange (ISE) index 
daily returns exhibit chaotic behavior. The authors conclude that 
long-term prediction is not possible for daily return series of ISE 
([13]: 1397). However, the authors did not compute the maximal 
LE.

Ou and Lai [23] demonstrated that US Dollar–Taiwan Dollar 
(USD–TWD) exchange rate time series have chaotic dynamics over 
the period from June 2007 to August 2010. To compute the max-
imal Lyapunov exponent, the authors implemented the method-
ology introduced by Wolf et al. [8]. However, it has been long 
understood that the algorithm proposed in [8] is unreliable for 
small data sets, computationally intensive and relatively difficult to 
implement (see Rosenstein et al. [9]: 119; Kantz [10]: 84). More-
over, in order to compute max LE by Wolf’s algorithm one has to 
compute angular separation between neighbor points as well4 (see 
Wolf et al. [8]: 295). However, we could not find that parameter in 
Ou and Lai [23]. Besides, the authors do not state whether they an-
alyzed nominal exchange rate or real (effective) exchange rate. The 
former depends upon self-fulfilling expectations of active traders 
(multiple equilibria, see Cooper [24]), whereas the latter is mostly 
driven by the former, by the purchasing power parity (and by the 
trade volume).

Wang et al. [11] analyzed the complex dynamical behaviors of 
the daily time series, including opening quotation, closing quo-
tation, maximum price, minimum price, total volume of the two 
stocks exchanged in SZSE and SHSE stock market indexes, respec-
tively. Based on the methodology proposed by Rosenstein et al. [9]
to compute max LE, the authors reported chaotic behavior of the 
above-listed five time series of a stock exchanged in SZSE. Then the 
authors proposed a “prediction method” and performed in-sample 
“prediction” for the total volume series of the stock which was de-
termined to be chaotic. Even though Wang et al. [11] prefer the 
term “prediction”, the authors’ approach does not cover “out-of-
sample” data, but is performed through “in-sample” data.5 Thus 
the task carried by Wang et al., is neither a prediction nor a fore-
casting, but is an in-sample fit of the model (see Brooks [25]: 279; 
Peseran [26]). From this perspective our study differs from theirs. 
To shed light on future studies, we find it worthwhile to introduce 
a technical discussion on approach of Wang et al. [11]. It can be 
found in Section 4.

The rest of the study is organized as follows: in Section 2, basic 
concepts of phase space reconstruction, correlation dimension, and 
Lyapunov exponent are discussed. In Section 3, the phase space 
reconstructions, correlation dimensions and maximal Lyapunov ex-
ponents, are computed for the daily data series of ISE-100 and 
SZSE B. An approach for out-of-sample prediction of the daily data 
series is proposed in Section 4. In Section 5 we introduce a non-

4 Put differently, it should be guaranteed to be below some threshold. We con-
sider that this is nearly impossible since the dynamical system generating exchange 
rates is unknown to observer and hence equations of motion.

5 The authors’ analysis on SZSE index covers the period from 31 December 1996 
to 14 March 2002, but the “prediction” begins from 15 March 2001 and goes 
through 250 days (Wang et al. [11]: 254). This means that all information from 
15 March 2001 onwards has been used when estimating model parameters.

linear model of active trading based on subjective trading rules. 
Conclusions are finally drawn in Section 6.

2. Fundamentals of analysis method

Let us denote the dynamical system, f : Rn → Rn , with the tra-
jectory,

xt+1 = f (xt) + εt+1, t = 0,1,2, . . . , (1)

The dynamical system itself may be assumed to be contaminated 
by noise, or the observed time series zt given in Eq. (3) may be 
assumed to convey noise.6 The Lyapunov exponents for such a dy-
namical system are measures of the average rate of divergence or 
convergence of a typical trajectory or orbit. The trajectory is also 
written in terms of the iterates of f . For an n-dimensional sys-
tem as given above, there are n exponents which are customarily 
ranked from largest to smallest:

λ1 ≥ λ2 ≥ . . . ≥ λn (2)

One rarely has the advantage of observing the state of the sys-
tem at any period t, xt , and that the actual functional form, f , that 
generates the dynamics. The model that is widely used is the fol-
lowing: associated with the dynamical system in Eq. (1) there is a 
measurement function h : Rn → R which generates the time series,

zt = h(xt) (3)

It is assumed that all that is available to observer is the sequence 
{zt}.

Assume that the target system is a dynamical system as given 
in Eq. (1), and that the observed time series is obtained through 
a measurement function as given in Eq. (3). Then, following Tak-
ens’ theorem [27], the reconstructed trajectory is an embedding 
of the original trajectory when the m value is sufficiently large. 
In order that such reconstruction achieves embedding, the dimen-
sion m should satisfy m ≥ 2n + 1. However, this is a sufficient 
condition and upper-worst case. Depending on the data, embed-
ding can be established even when m is less than 2n + 1 (Gencay 
and Dechert [28]). In the embedding method, there are two pa-
rameters: embedding dimension and time delay. Abarbanel [29]
suggests how to select m and d. From now on the time delay d, 
is taken to be equal to 1, which corresponds to our observation 
interval on time domain.

According to Takens [27], from observed time series {zt}, one 
can generate the data vector

yi = (zi, zi+d, . . . , zi+(m−1).d) for all i ∈ (
N − (m − 1).d

)
(4)

where N is the length of the observed sequence {zt}. This vector 
indicates a point of m-dimensional reconstructed phase space Rm . 
Thus a point on the orbit is obtained as given in Eq. (4).

Grassberger and Procaccia [6] introduced a method for calculat-
ing correlation dimension which is widely used for characterizing 
strange attractors. The correlation dimension is defined as follows.

Let r denote critical distance. For a given m, the correlation in-
tegral is defined as

C K (r,m) = 2

K (K − 1)

K∑
i, j=1 (i �= j)

θ
(
r − |yi − y j|

)
(5)

where K is the cardinality of the dataset, θ is Heaviside function, if 
v ≤ 0, θ(v) = 0; otherwise θ(v) = 1, for a phase point yi . If r is too 
small, then C K (r, m) = 0. If it is taken too high, then C K (r, m) = 1.

6 Kantz’s algorithm allows us to make this assumption, see [9] and [10].
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