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In this paper we consider a blind adaptive deconvolution problem in which we observe the output of 
an unknown linear system (channel) from which we want to recover its input using an adaptive blind 
equalizer (adaptive linear filter). Since the channel coefficients are unknown, the optimal equalizer’s 
coefficients are also unknown. Thus, the equalizer’s coefficients used in the deconvolution process are 
only approximated values leading to an error signal in addition to the source signal at the output of 
the deconvolutional process. We define this error signal throughout the paper as the convolutional noise. 
It is well known that the convolutional noise probability density function (pdf) is not a Gaussian pdf 
at the early stages of the deconvolutional process and only at the latter stages of the deconvolutional 
process the convolutional noise pdf tends to be approximately Gaussian. Despite this knowledge, the 
convolutional noise pdf was modeled up to recently as a Gaussian pdf because it simplifies the Bayesian 
calculations when carrying out the conditional expectation of the source input given the equalized or 
deconvolutional output and since no other model was suggested for it. Recently, a new model was 
suggested by the same author for the convolutional noise pdf based on the Edgeworth expansion 
series. This new model leads to improved deconvolution performance for the 16 Quadrature Amplitude 
Modulation (QAM) input and for a signal to noise ratio (SNR) of 30 dB. Thus, the question that arose here 
was whether we may find another model for the convolutional noise pdf that will also lead the system 
with improved deconvolutional performance compared to the case when the Gaussian model is applied 
for the convolutional noise pdf. In this paper, we propose a new model for the convolutional noise pdf 
inspired by the Maximum Entropy density approximation technique. We derive the relevant Lagrange 
multipliers and obtain as a by-product new closed-form approximated expressions for the conditional 
expectation and mean square error (MSE). Simulation results indicate that improved system performance 
is obtained from the residual ISI point of view for the 16QAM input case with our new proposed 
model for the convolutional noise pdf compared to the case when the Gaussian model or Edgeworth 
expansion series are applied for the convolutional noise pdf. For two other chosen input sources, a faster 
convergence rate is observed with the algorithm using our new proposed model for the convolutional 
noise pdf compared to the Maximum Entropy and Godard’s algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we deal with the convolutional noise arising at 
the output from a blind deconvolutional process. A blind decon-
volution process arises in many applications such as seismology, 
underwater acoustic, image restoration and digital communica-
tion [1]. Let us consider for a moment the digital communication 
case. During transmission, a source signal undergoes a convolutive 
distortion between its symbols and the channel impulse response. 
This distortion is referred to as intersymbol interference (ISI) [2]. 
Thus, a blind adaptive filter is used to remove the convolutive ef-
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fect of the system to produce the source signal [2]. This process is 
called blind deconvolution. Since the updated coefficients used in 
the blind adaptive filter are not the ideal values, a noise named as 
“convolutional noise” is observed at the output of the deconvolu-
tion process in addition to the source signal.

According to [1] and [3], in the early stages of the iterative 
deconvolution process, the ISI is typically large with the result 
that the data sequence and the convolutional noise sequence are 
strongly correlated and the convolutional noise sequence is more 
uniform than Gaussian [4]. In the latter stages of the deconvolution 
process where the blind adaptive filter has reached the conver-
gence state, the convolutional noise pdf is approximately Gaussian 
[3]. Despite of this knowledge, the convolutional noise pdf was 
modeled up to recently as Gaussian [1,3,5–11]. In [5], the Gaussian
pdf model was used to obtain the residual ISI obtained by blind 
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adaptive equalizers while in [1,3,6–11] the Gaussian pdf model 
was applied to obtain the conditional expectation of the source sig-
nal given the equalized output via Bayes rules. There is no doubt 
that applying the Gaussian pdf model for the convolution noise pdf 
simplifies the calculations but at the same time leads to subopti-
mum solutions from the residual ISI point of view [1,3].

In the literature we may find several works [12–16] dealing 
with pdfs applicable for the non-Gaussian case but encompasses 
also the Gaussian model. The multiple-user interference (MUI) in 
time hopped impulse-radio ultrawide bandwidth (UWB) systems 
is impulse-like and poorly approximated by a Gaussian distribu-
tion [12]. Several alternative distributions for approximating the 
MUI process and the MUI-plus-noise process in UWB systems are 
motivated and compared in [12]. In [16], the approach of using 
two pdfs is adopted to approximate the distribution of the mul-
tiuser interference plus noise. Specifically, a generalized Gaussian 
pdf is used in [16] to approximate the distribution of the total dis-
turbance when the received pulse is collided and a Gaussian pdf 
is applied to approximate the distribution of the total disturbance 
when the received pulse is not collided. In [14], a new detector 
is proposed for amplify-and-forward (AF) relaying system when 
communicating with the assistance of relays where the probability 
density function is estimated with the help of the kernel density 
technique and a generalized Gaussian kernel is proposed that pro-
vides more flexibility and encompasses Gaussian and uniform ker-
nels as special cases. According to [15], complex elliptically sym-
metric (CES) distributions have been widely used in various engi-
neering applications for which non-Gaussian models are needed. 
CES distributions constitute a wide-class of distributions that in-
clude, among others, the complex normal, complex t-distribution, 
K-distribution, complex generalized Gaussian distribution and the 
class of compound-Gaussian distributions as special cases. In [15], 
circular CES distributions are surveyed. The generalized Gaussian 
distribution (GGD) provides a flexible and suitable tool for data 
modeling and simulation [13]. In [13] a thorough presentation of 
the complex-valued GGD is given and denoted as CGGD. The CGGD 
adapts to a large family of bivariate symmetric distributions, from 
super-Gaussian to sub-Gaussian including specific densities such as 
Laplacian and Gaussian distributions [13].

Up to recently, the Gaussian model was the only option on 
the table for modeling the convolutional noise pdf. Recently [17], 
a new model was suggested for the convolutional noise pdf based 
on the Edgeworth expansion series. This new model has shown to 
lead to improved deconvolution performance for the 16QAM in-
put and SNR = 30 dB case. Thus, the question that arose here was 
whether it is possible to find another model for the convolutional 
noise pdf that will also lead the system with improved decon-
volutional performance compared to the case when the Gaussian 
model is used for the convolutional noise pdf.

In this paper, we propose a new model for the convolutional 
noise pdf inspired by the Maximum Entropy density approximation 
technique. We derive the relevant Lagrange multipliers and obtain 
as a by product, new closed-form approximated expressions for 
the conditional expectation and MSE. Simulation results indicate 
that improved system performance is obtained for the 16QAM in-
put case with our new proposed model for the convolutional noise 
pdf compared to the case when the Gaussian model or Edgeworth 
expansion series are applied for the convolutional noise pdf.

This paper is organized as follows: after having described the 
system under consideration in Section 2 we introduce our new 
model for the convolutional noise pdf in Section 3. In this section, 
we also obtain new closed-form approximated expressions for the 
conditional expectation and MSE as well as the needed Lagrange 
multipliers. Simulation results are given in Section 4 and Section 5
is our conclusion.

Fig. 1. A block diagram for baseband communication transmission.

2. System description

The system under consideration is the same system used in [1]
and is illustrated again in Fig. 1.

The following assumptions have been taken following [1]:

1. The input sequence x[n] consists of zero mean, real or complex 
(where the real and imaginary parts are independent) random 
variables with unknown even symmetric probability distribu-
tion function.

2. The unknown channel h[n] is a possibly non-minimum phase 
linear time-invariant filter where the zeros lie sufficiently far 
from the unit circle.

3. The equalizer c[n] is a tap delay line.
4. The noise w[n] is an additive Gaussian white noise (AWGN).
5. The function T [·] is a memoryless nonlinear function (called 

“the nonlinearity”) which satisfies: T [z1 + jz2] = T [z1] + jT [z2]
where z1 and z2 are the real and imaginary parts of the equal-
ized output respectively.

The input sequence x[n] is transmitted through the channel h[n]
and is corrupted with noise w[n]. Therefore, the equalizer’s input 
sequence y[n] may be written as:

y[n] = x[n] ∗ h[n] + w[n] (1)

where ‘*’ denotes the convolution operation. In the ideal case, the 
equalized output could be written as [8]:

z[n] = x[n − D]e jθ (2)

where D is a constant delay and θ is a constant phase shift. There-
fore, for the ideal case we have:

c[n] ∗ h[n] = δ[n − D]e jθ (3)

where δ is the Kronecker delta function. In this paper we assume 
that D = 0 and θ = 0, since D does not affect the reconstruction 
of the original input sequence x[n] and θ can be removed by a de-
cision device [1,8]. Let cg(n) be the initial guess for the unknown 
c[n]. Thus, we may write [8]:

s̃[n] = cg[n] ∗ h[n] = δ[n] + ξ [n] (4)

where ξ [n] stands for the difference between the ideal value 
c[n] and the initial guess cg[n]. According to [3], at the latter 
stages of the deconvolutional process, ξ [n] may be considered as 
a long and oscillatory wave and if ξ [n] is long enough, the central 
limit theorem makes a Gaussian model for the convolutional noise 
(ξ [n] ∗ x[n]) to be plausible. Convolving cg[n] with the received se-
quence y[n], using (1) and (4) we obtain:

z[n] = y[n] ∗ cg[n] = x[n] + p[n] + w̃[n] (5)
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