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Two reference indices used to characterize left ventricular (LV) global chamber function are end-systolic 
peak elastance (Emax) and the time-constant of relaxation rate (τ ). However, these two indices are very 
difficult to obtain in the clinical setting as they require invasive high-fidelity catheterization procedures. 
We have previously demonstrated that it is possible to approximate these indices noninvasively by digital 
processing color-Doppler M-mode (CDMM) images. The aim of the present study was twofold: (1) to 
study which feature extraction from linearly reduced input spaces yields the most useful information 
for the prediction of the haemodynamic variables from CDMM images; (2) to verify whether the use of 
nonlinear versions of those linear methods actually improves the estimation. We studied the performance 
and interpretation of different linearly transformed input spaces (raw image, discrete cosine transform 
(DCT) coefficients, partial least squares, and principal components regression), and we compared whether 
nonlinear versions of the above methods provided significant improvement in the estimation quality. Our 
results showed that very few input features suffice for providing a good (medium) quality estimator for 
Emax (for τ ), which can be readily interpreted in terms of the measured flows. Additional covariates 
should be included to improve the prediction accuracy of both reference indices, but especially in τ
models. The use of efficient nonlinear kernel algorithms does improve the estimation quality of LV indices 
from CDMM images when using DCT input spaces that capture almost all energy.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Characterization of left ventricular (LV) systolic and diastolic 
chamber function is still a pending issue in the clinical setting. 
In experimental physiology, peak end-systolic elastance (Emax) is 
well established as the best available index to measure systolic 
performance of the LV chamber. In turn, the time-constant of LV 
relaxation (τ ) is accepted as the gold standard method accounting 
for the rate of relaxation of the chamber, one of the main dias-
tolic properties of LV function. Measuring Emax requires complex 
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measurements of instantaneous pressure and volume inside the 
LV chamber as well as preload intervention maneuvers. Measur-
ing τ requires invasive catheterization of the LV using high-fidelity 
micromanometers. For these reasons, neither Emax nor τ are only 
measured in patients for research purposes.

A number of noninvasive methods have been developed to ob-
tain surrogate indices that correlate with Emax and τ . Among them, 
most research has focused on Doppler-echocardiography, because 
it is a fully noninvasive, non ionizing, cheap and readily available 
at the patient’s bedside. In a previous work we have shown that τ
and Emax can be reasonably approximated from CDMM images. Us-
ing a fluid-dynamic approach we have shown that Emax correlates 
closely to the peak-ejection pressure difference developed inside 
the ventricle, which can be computed by solving Euler’s equation 
from the CDMM velocity data [27]. Similarly, τ can be approxi-
mated by the peak reverse end-ejection pressure difference with 
reasonable accuracy [26]. Importantly, using a learning from sam-
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ples approach we have obtained similar approximations without 
the need of complex fluid-dynamic modeling [13]. Hence, an ex-
perimental (animal) setup was used to simultaneously measure the 
catheter-based curves (pressure and flow) and acquire the CDMM 
images; and a machine-learning model was designed for straight-
forward estimation of τ and Emax parameters from an input space 
given by the diastolic period of the digitized CDMM image.

In that precedent work, a linear estimator was used for the im-
age input space, which raises several questions. On the one hand, 
nonlinear relations between CDMM images and indices can be ex-
pected, as the haemodynamic variables in the cardiac circulatory 
system are known to be mostly interrelated by nonlinear fluid dy-
namic equations. On the other hand, linear kernel estimators are 
often suggested in the machine learning literature as the most 
appropriate choice for high-dimensional input spaces, and they 
also provide with easier to interpret, black-box models than their 
nonlinear counterparts. Therefore, our aim was to test whether al-
ternative algorithms on the machine learning specifications could 
improve the prediction of invasive indices Emax and τ from CDMM 
images. First, we wanted to study which feature extraction from 
linearly reduced input spaces yields the most useful information 
for the prediction of the haemodynamic variables from CDMM im-
ages. Second, we wanted to verify whether the use of nonlinear 
algorithmic versions of those linear methods actually improves the 
estimation. Accordingly, we benchmarked the performance of sev-
eral linear kernel estimators, in terms of linear feature extraction 
transformations, and in addition we analyzed the physical and clin-
ical meaning of the relevant features in these transformed spaces, 
when possible. We also benchmarked the nonlinear kernel versions 
of the above analyzed estimators, hence determining the actual 
improvement obtained by the consideration of nonlinearity in the 
estimation kernel machine. For this purpose, we chose several ker-
nel methods, namely, Support Vector Regression (SVR), Principal 
Component Regression (PCR), and Partial Least Squares (PLS), ac-
cording to different levels of algorithm complexity in terms of the 
multidimensional output estimation from the multidimensional in-
put. SVR performs one dimensional output robust estimation, PCR 
performs dimensionality reduction and multidimensional output 
estimation, and PLS performs a dimensionality reduction accord-
ing input–output covariance.

The rationale for the chosen input features was as follows. First, 
the RAW input space conveys all the image information, hence it 
represents a necessary benchmarking. Also, a linear machine work-
ing on the input space will be easy to interpret, in terms of the 
relative temporal and spatial position of the linear weights. Sec-
ond, DCT input space is a widespread used frequency transform 
in image problems, and given the smoothness and low-pass fre-
quency content of CDMM images, it can be expected to work well 
from an image information compression point of view. Third, PCR 
provides us with features from an intrinsic image decomposition 
(different from frequency decompositions), with a decoupled re-
gression stage. And finally, PLS provides us with features from an 
intrinsic image decomposition in which the regression output qual-
ity is an embedded optimization criterion.

The scheme of the paper is as follows. In the next section, the 
fundamental theory of the multidimensional kernel machines is 
summarized for the SVR, PCR, and PLS algorithms. Then, a detailed 
set of experiments is presented for benchmarking and interpreta-
tion of linear vs nonlinear kernel versions of the estimators. Finally, 
conclusions are drawn.

2. Multidimensional kernel machines

This section first describes the basic equations of SVR, PCR and 
PLS. These methods allow both linear and nonlinear estimation 
without explicitly extracting features from the images. Both PCR 

and PLS implicitly extract features (components or latent vectors) 
previous to the estimation problem. PCR performs a feature ex-
traction such every new feature captures as much as possible of 
the remaining variance of the input data, where PLS extracts fea-
tures that maximize the covariance of the input data and target 
variables.

2.1. SVR estimation

SVR is a well-studied technique that allows nonlinear mappings 
of the input space and works well with high dimensional spaces 
like images [20]. Given a training set {(xi, yi), i = 1, . . . , n} where 
xi ∈R

d and yi ∈ R, the SVR finds a function f that estimates yi as

ŷi = f (xi) = φT (xi)w + b = yi + ei (1)

where φ : Rd →H is in general a nonlinear mapping to the feature 
space H; (·)T is the matrix transpose operator; w is the weight 
column vector in this space; b is a bias term; and ei is the resid-
ual error. Function f is found by minimizing a functional with a 
regularization term and a loss term, as follows:

L = 1

2
‖w‖2 +

n∑
i=1

L(ei) (2)

where L is in our case the robust ε-Huber loss function [13], 
which increases the flexibility modeling outliers, given by

L(ei) =
⎧⎨
⎩

0 |ei | ≤ ε
1

2δ
(|ei | − ε)2 ε ≤ |ei | ≤ ε + δC

C(|ei | − ε) − 1
2 δC2 ε + δC ≤ |ei |

(3)

where ε is the insensitive-zone parameter (no loss for errors lower 
than ε), and δC controls the size of the quadratic zone of the loss 
function. Finally, we minimize the following convex problem:

L = 1

2
‖w‖2 + 1

2δ

∑
i∈I1

(
ξ2

i + ξ∗2
i

) + C
∑
i∈I2

(
ξi + ξ∗

i

) −
∑
i∈I2

δC2

2
(4)

with respect to w, b, ξi, ξ∗
i , taking into account the following con-

vex constraints:

yi − φT (xi)w − b ≤ ε + ξi (5)

φT (xi)w + b − yi ≤ ε + ξ∗
i (6)

ξi, ξ
∗
i ≥ 0 (7)

for i = 1, . . . , n, and where ξi, ξ∗
i are positive slack variables to 

penalize the positive and negative errors, and I1 and I2 are re-
spectively the sets of samples that are in the quadratic and linear 
loss zone.

Following the same procedure that solves standard SVR [20], 
we obtain the following solution:

ŷt = f (xt) =
n∑

i=1

(
αi − α∗

i

)
K (xi,xt) + b (8)

where K (xi, xt) = φ(xi)
T φ(xt) is a Mercer kernel function, which 

is usually constructed without explicitly projecting in H (i.e., with-
out explicit knowledge of φ) and C ≥ αi, α∗

i ≥ 0 are the Lagrange 
multipliers for the restrictions (5), (6). After optimization, some 
αi, α∗

i have a non-zero value and their associated sample is named 
support vector (SV), because it influences function f . Three param-
eters (C, ε, δ) need to be tuned for linear SVR (as well as the 
kernel width σ for the Gaussian case). Linear kernel is defined as 
kL(x1, x2) = xT

1 x2, and Gaussian kernel is defined as kG (x1, x2) =
e
− ‖x1−x2‖2

2σ2 .
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