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a b s t r a c t

Updating a finite element model to match measured spectral information has been a

important task for engineers. In the process, it is desirable to match only the measured

spectral information without tampering with the other unmeasured and unknown

eigeninformation in the original model and to maintain positive definiteness (semidefi-

niteness) in the coefficient matrices. In this paper, we present a new direct method for

the finite element model updating. By constructing a parametric symmetric low-rank

correction form, the method can preserve both no spill-over and positive definiteness

(semidefiniteness) of the mass and stiffness matrices. Using the parametric form,

necessary and sufficient conditions under which this problem is solvable are obtained

and a minimum modification is given explicitly. Numerical examples show that the

method is efficient.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Obtaining highly accurate analytical structural models is necessary for analyzing and predicting the dynamic
performance of complex structures during analysis and design. By the finite element technique, vibrating phenomenon
of a mechanical or civil structure may be modeled by a second-order ordinary differential system

Ma €qðtÞþKaqðtÞ ¼ f ðtÞ, ð1Þ

where f ðtÞ 2 Rn varies in time t, Ma,Ka 2 R
n�n are the analytical mass and stiffness matrices, respectively, and n stands for

the number of degrees of freedom. In general, Ma is symmetric and positive definite, denoted by Ma40, and Ka is
symmetric and positive semidefinite, denoted by KaZ0. Eq. (1) is usually known as the finite element model. For the sake
of convenience, we will denote the model simply by fMa,Kag. It is well known that if qðtÞ ¼ xeiot is a fundamental solution
of (1), then the natural frequency o and the mode shape (eigenvector) x must solve the following generalized eigenvalue
problem:

Kax¼ lMax,

where l¼o2 is called the eigenvalue. A variety of numerical methods for the generalized eigenvalue problem can be
found in some books (see, for example, [1,2]). Owing to the complexity of the structure, however, the finite element model
is an approximate discrete analytical model of the continuous structure. Natural frequencies and mode shapes of the
analytical model fMa,Kag do not match very well with experimentally measured frequencies and mode shapes obtained
from a real-life vibrating test. Thus, updating the existing dynamic model on the basis of modal test data is very important
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for predicting actual behavior of the structure precisely via the structural dynamic model. The updated model may be
considered a better representation of the actual structure than the original finite element model, and can be used with
more confidence to analyze and predict the dynamic responses of the structure.

Over the past years, finite element model updating problem has received considerable discussions. Various methods
have been developed for correcting analytical models to predict test results more closely. These methods can be broadly
classified into five classes: optimal matrix updates or direct updating methods [3–12], sensitivity methods [13–15],
eigenstructure assignment techniques [16–19], minimum-rank perturbation methods [20,21] and frequency response
function-based model updating techniques [22–26], and have been widely used and successfully applied to the model
updating for a variety of structures. A detailed discussion of every approach is beyond the scope of the paper. Interested
readers are referred to survey papers [27,28]. A detailed theoretical analysis of model updating techniques can be found in
the seminal book [29].

This paper concentrates on the direct updating methods based on measured modal data. These methods seek a refined
analytical model whose modal properties are in agreement with those from the experimental modal survey of the
structure, so that the updated matrices are those closest to the initial analytical model fMa,Kag. For example, Baruch and
Bar-Itzhack [3,4] obtained a closed-form solution of the updated stiffness matrix by using Lagrange multipliers for
minimizing the changes in the stiffness matrix to satisfy specified constraints, assuming that the mass matrix is exact.
Baruch [5] and Berman and Nagy [6] developed the analytical model improvement procedures to update the mass and
stiffness matrices alternately. Wei [7,8] presented the formulations to correct both the mass and stiffness matrices based
on constrained minimization theory. Applying the QR-factorization of measured modes and the best approximation
theory, Dai [9] proposed a numerical method for correcting both the mass and stiffness matrices simultaneously. The
constraints imposed are the orthogonality, the dynamic equation and the symmetry of the matrices to be updated.
However, the sparsity pattern of the original analytical model fMa,Kag may be destroyed. In order to preserve the original
stiffness matrix pattern, Kabe [30], Caesar and Peter [31], Kammer [32], Smith and Beattie [33,34], Halevi and Bucher [35],
and Sako and Kabe [36] developed some algorithms preserving the connectivity of the structural model. These are
analogous methods that, under certain conditions, are mathematically equivalent to the stiffness matrix adjustment
method [30]. However, these methods do not preserve that the updated stiffness matrix is positive semidefinite. Another
concern is that these methods cannot guarantee that extra, spurious modes are not introduced into the range of the
frequency range of interest [29]. The challenge, known as the no spill-over phenomenon in the engineering literature, is
that in updating an existing model it is often desirable that the current vibration parameters not related to the newly
measured parameters should remain invariant. Recently, assuming that the mass matrix is not updated, Carvalho et al. [37]
proposed a direct method for undamped model updating with no spill-over. Chu et al. [38–40] considered damped model
updating with no spill-over. In this paper, to preserve both no spill-over and positive definiteness of the mass and stiffness
matrices, we will consider the problem of updating the existing analytical model so that the updated model has the
following properties:

� The measured eigenvalues and eigenvectors are also the eigenvalues and eigenvectors of the updated model.
� The unmeasured eigenvalues and eigenvectors remain unchanged.
� The exploitable properties such as symmetry, definiteness of the original model are preserved.
� The difference between the updated model and the original model is minimal.

Let fl1, . . . ,lp; lpþ1, . . . ,lng and fx1, . . . ,xp; xpþ1, . . . ,xng be the n eigenvalues and eigenvectors of the analytical model
fMa,Kag, and let fm1, . . . ,mpg and fy1, . . . ,ypg be a set of p ðp5nÞ eigenvalues and eigenvectors measured from an
experimental structure. Mathematically, the model updating problem may be formulated as follows.

Problem MUP: Given an analytical model fMa,Kag, a set of its associated eigenpairs ðli,xiÞ ði¼ 1, . . . ,pÞ with p5n, and
another set of measured eigenpairs ðmi,yiÞ ði¼ 1, . . . ,pÞ from an experimental or a real-life structure, update the analytical
model fMa,Kag to fM,Kg of the same structure such that:

(1) M¼MT
¼MaþDM40, K ¼ KT

¼ KaþDKZ0.
(2) The subset ðli,xiÞ ði¼ 1, . . . ,pÞ is replaced by ðmi,yiÞ ði¼ 1, . . . ,pÞ as p eigenpairs of the updated model fM,Kg.
(3) The remaining (unknown) n�p eigenpairs of the updated model fM,Kg are the same as those of the original model
fMa, Kag.

Throughout this paper, the following notations will be used. Let

L1 ¼ diagfl1, . . . ,lpg, L2 ¼ diagflpþ1, . . . ,lng, S1 ¼ diagfm1, . . . ,mpg,

X1 ¼ ½x1, . . . ,xp�, X2 ¼ ½xpþ1, . . . ,xn�, X ¼ ½X1,X2�, Y1 ¼ ½y1, . . . ,yp�:

Rm�n denotes the set of all m�n real matrices. AT stands for the transpose of a real matrix A. If a matrix A is nonsingular,
then A�T9ðA�1

Þ
T . In represents the identity matrix of size n. For A,B 2 Rm�n, an inner product in Rm�n is defined by

ðA,BÞ ¼ traceðBT AÞ, then Rm�n is a Hilbert space. The matrix norm J:J induced by the inner product is the Frobenius norm.
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