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Cubic spline interpolating the local maximal/minimal points is often employed to calculate the envelopes 
of a signal approximately. However, the undershoots occur frequently in the cubic spline envelopes. To 
improve them, in our previous paper we proposed a new envelope algorithm, which is an iterative 
process by using the Monotone Piecewise Cubic Interpolation. Experiments show very satisfying results. 
But the theoretical analysis on why and how it works well was not given there. This paper establishes 
the theoretical foundation for the algorithm. We will study the structure of undershoots, prove rigorously 
that the algorithm converges to an envelope without undershoots with exponential rate of convergence, 
which can be used to determine the number of iterations needed in the algorithm for a good envelope 
in applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Envelope is one of the most fundamental concepts in sig-
nal processing. It plays an important role in the instantaneous 
frequency estimation, demodulation of mono-component signals, 
adaptive decomposition and so on. Intuitively speaking, for a given 
signal, the envelope should be smooth and contain as little oscillation 
as possible; it should be situated above (below) the signal except for the 
points where the envelope and the signal are tangent, and wrap the sig-
nal as tightly as possible. Although the physical intuition of envelope 
looks simple, a rigorous mathematical definition remains an open 
issue. Some practical models have been developed and used widely 
in signal analysis and processing [1,7,11].

The earliest mathematical model for envelope can be traced 
back to the analytic signal (AS) method, which was first proposed 
by D. Gabor to estimate the instantaneous frequency and ampli-
tude of a signal [3]. Given a real-valued signal x(t), its Hilbert 
transform is defined as the following Cauchy principal value in-
tegral

Hx(t) = p.v.

∫
R

x(t − τ )

τ
dτ . (1)
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By taking x(t) as the real part and Hx(t) as the imaginary part we 
obtain the analytic signal z(t) = x(t) + iHx(t) = ρ(t)eiθ(t) , where

ρ(t) =
√

x2(t) + [
Hx(t)

]2
(2)

is defined as the analytic envelope of the signal x(t). This tech-
nique for computing the envelope is called the AS method and 
the resulting envelope ρ(t) is called the Analytic Signal Envelope 
(ASE). This model was proved to be the unique reasonable ana-
lytic model for signal demodulation under some mild conditions 
by Vakman [14,15]. Recently, J.F. Huang and L.H. Yang gave a solid 
mathematical foundation for this result by extending the Hilbert 
transform to a larger space Lp

w(R) [5,6]. Even though this model 
is complete from the point of mathematical view, however, from 
the point of physical view, it often produces ridiculous results 
for practical signals [4,16]. In 1998, N.E. Huang and his cowork-
ers computed the envelope by interpolating the maxima/minima 
of the input signal with the cubic spline [7], which we denote by 
CSE. It is shown that the CSE coincides with the physical envelope 
of the signal much better than the ASE in most cases [16]. But 
this model has an inherent drawback: the undershoots often oc-
cur near the local extreme points of the signal, which contradicts 
the physical requirement that the upper/lower envelope situates 
above/below the signal. To improve the CSE model, we proposed 
a new envelope algorithm by modifying the envelope iteratively 
using the monotonic piecewise cubic interpolation (MPCI) in our 
recently published paper [16], which is denoted by IMCE. Exper-
iments show that the IMCEs can eliminate the undershoots com-
pletely and meanwhile keep the smoothness property. Fig. 1 is an 
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Fig. 1. The comparison of the envelope methods for the signal x(t) = (3 + 2 cos(t)) cos(2t2). Left: The original signal (green), ASE (red), CSE (blue) and IMCE (purple); Right: 
The drawing of partial enlargement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

example which compares these methods and shows that the IMCE 
has completely eliminated the undershoots. Since the CSE plays a 
key role in the Empirical Mode Decomposition and the AM/FM de-
modulation of Intrinsic Mode Functions [7,8], evident gain can be 
obtained when we substitute the improved envelope IMCE for the 
CSE [16]. Lots of experiments show that, for general signals, all 
the undershoots can be eliminated after a few times of iteration 
procedures, usually 2–3 times. However, the theoretical proof was 
not provided there. In this paper, we prove that iterative procedure 
converges exponentially to an envelope without undershoots.

The study on envelope is an active field in time-frequency and 
non-stationary signal processing. In that year or later [16] was 
published, some new approaches appeared [9,10,17]. It is mean-
ingful to summarize or compare those new algorithms. However, 
this paper aims at establishing the theoretical foundation for the 
algorithm presented in [16]. We do not present any new algorithm 
or compare the existing algorithms in this paper.

The rest of the paper is organized as follows: Section 2 dis-
cusses the possibilities undershoots occur, the structure of the un-
dershoot set, gives the improved algorithm and studies how the 
number of undershoot intervals changes. In Section 3, it is proved 
rigorously that the iterative algorithm converges to an envelope 
without undershoots with exponential rate of convergence. In Sec-
tion 4, experiments are conducted to support the result of the 
convergence rate. Finally, Section 5 gives the conclusion of this pa-
per.

2. Undershoots and elimination

2.1. Undershoots and undershoot intervals

As mentioned in the last section, undershoots often occur when 
the cubic spline interpolating the maximal/minimal points is em-
ployed as the upper/lower envelope of a signal. In this subsection, 
we will discuss why and how the undershoots occur and then give 
the structure of the undershoot set. Firstly, we give the definition 
of undershoots.

Definition 1. Given a signal x(t) defined on [a, b], let u(t) be its 
upper envelope obtained by using some method. Then the under-
shoot set is defined by

U(x, u) := {
t ∈ [a,b] : x(t) > u(t)

}
.

If U(x, u) is an empty set, then the envelope is said to contain no 
undershoots.

The following theorem reveals the reason and possibility that 
an envelope contains undershoots.

Theorem 1. Let x(t) be a differentiable signal defined on [a, b] and τ1 <

· · · < τn be all its local maximal points. Let {x j = x(τ j) : j = 1, · · · , n}
be its data set and u(t) be a differentiable interpolation function passing 
{(τ j, x j) : j = 1, · · · , n}. For 1 ≤ i ≤ n, denote di = u′(τi), then

(i) If di �= 0, undershoot must occur near τi . More exactly, if di > 0
there must exist δi > 0 such that u(t) < x(t) on (τi − δi, τi); else, if 
di < 0, there must exist δi > 0 such that u(t) < x(t) on (τi, τi + δi).

(ii) If di = 0, undershoots depend on the high-order derivatives of u(t)
and x(t) at τi if they exist.

Proof. Using the differentiability of u(t) and x(t) at τi and noticing 
x′(τi) = 0 we have that

u(t) = u(τi) + di(t − τi) + o(t − τi), x(t) = x(τi) + o(t − τi),

where the little-o notation means o(t − τi)/(t − τi) → 0 as t − τi
→ 0. Therefore

u(t) − x(t) = di(t − τi) + o(t − τi).

The conclusions of the theorem can be easily concluded by the 
above equality. �

Fig. 2(a)–(e) display graphically some typical cases of under-
shoots. They do not include all the cases of undershoots. More 
complicated undershoots may exist, such as the case shown in 
Fig. 2(f). However, it can be shown that, under a mild condition, 
the undershoots occur around the local maximal point of the sig-
nal if they exist. Detailed discussion will be given in Section 2.3.

The following theorem shows that the undershoot set U(x, u) is 
a union of at most countable disjoint open intervals provided that 
both x(t) and u(t) are continuous on [a, b].

Theorem 2. Let the upper envelope u(t) defined on [a, b] satisfy u(a) ≥
x(a), u(b) ≥ x(b). Denote x1(t) = x(t) − u(t). If both x(t) and u(t) are 
continuous on [a, b], then the undershoot set can be uniquely expressed 
as the union of at most countable disjoint intervals {(ai, bi)}:
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