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a b s t r a c t

This paper considers the problem of finite element model (FEM) updating in the context

of model selection. The FEM updating problem arises from the need to update the initial

FE model that does not match the measured real system outputs. This inverse system

identification-problem is made even more complex by the uncertainties in modeling

some of the structural parameters. Such uncertainty often results in a number of

competing forms of FE models being proposed which leads to lack of consensus in the

field. A model can be formulated in a number of ways; by the number, the location and

the form of the updating parameters. We propose the use of a Bayesian evidence

statistic to help decide on the best model from any given set of models. This statistic

uses the recently developed stochastic nested sampling algorithm whose by-product is

the posterior samples of the updated model parameters. Two examples of real

structures are each modeled by a number of competing finite element models. The

individual model evidences are compared using the Bayes factor, which is the ratio of

evidences. Jeffrey’s scale is then used to determine the significance of the model

differences obtained through the Bayes factor.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

System identification [17] forms an important stage of many scientific modeling problems and is mainly concerned
with the derivation of mathematical models of a system from its measured dynamics. The results from the system
identification can then be used to understand and predict the system responses in future designs or different
environments. Therefore the analyst is interested in the accuracy, confidence range, and more critically the correctness
of the assumed mathematical model.

In this paper, the systems considered are structural and the model domain is that of finite element models (FEMs). In
this context, these models are used to approximate the structural dynamics of systems such as train chassis, aircraft
fuselages, bicycle frames, or civil structures. It is often the case that the finite element predictions do not match the
measured structure’s dynamic response [10,12]. This inconsistency may be due to the following: the form of the FE model,
the identity and magnitude of the uncertain parameters, the noise and/or errors in the measurements. Furthermore the
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measured data is incomplete due to the impracticality of capturing the full dynamics of the structure at every degree of
freedom and over the complete frequency range, and this renders the problem ill-conditioned [9,10,12]. Consensus on this
inverse problem is made more difficult by the fact that a multitude of mathematical models of the structure can be
developed from engineering judgment. Moreover, these models can have varying levels of complexity, which leads to non-
unique solutions for a particular modeled system. This situation makes the identification of the best FEM of the system of
primary importance.

A number of pertinent questions arise in system identification: (1) Which aspects of the models do we need to update
[14,24]? (2) How are we to update these models? [6,13,15,18,22,23] (3) Is the updated model the best one [16]? In this
paper we propose approaching the finite element model updating problem by answering the third question. This can be
recast as; what evidence do we have that our updated model is the correct one given that a number of plausible models of
the real system can be generated from answering the first two questions? Question one is normally addressed from
engineering judgment, often complemented by some form of parameter sensitivity measures/studies [9,10,12,24,33].
Question two is guided by the relevance of current available methods/approaches in the field. The model evidence
approach proposed in this paper has received little attention in the FEM updating field and we believe it goes to the core of
the model updating problem (FEMUP). By addressing the third question, we can get a better understanding of the given
structural model design, the qualitative significance of the difference between proposed models and which model(s) is
(are) worth considering for further analysis. This evidence measure, we argue, ought to be an essential and necessary
measure to establish before any model updating problem is settled. We thus propose that the FEMUP should be
approached from a model selection perspective. This is perhaps best approached using Bayesian inference, which allows
one to deal with models in an intuitive and systematic way [3,4,17,19,20].

In the next section, we formally present the finite element model background. In Section 3, we introduce parameter
estimation and model selection in the Bayesian framework. The Bayesian definition of model evidence is also presented.
Section 4 introduces the evidence calculation algorithm. Section 5 presents two example implementations of the evidence
concept: firstly on a simple unsymmetrical H-beam and secondly on a more complex Garteur SM-AG19 structure. At the
end of each example we discuss the findings and Section 6 concludes the paper.

2. Finite element background

In finite element modeling, dynamic structures are analyzed by discretizing the structure into constituent elements.
When assembled these elements constitute a system described by a second-order matrix differential equation of the form
[9,10,12]

M €xðtÞþC _xðtÞþKxðtÞ ¼ fðtÞ ð1Þ

where M, C, and K are of equal size and are called the mass, damping and stiffness matrices, or alternatively the system
matrices, f(t) is the input force and x(t) is the response vector. If Eq. (1) is transformed to the modal domain and the
structure considered is lightly damped or undamped, C¼0, the corresponding eigenvalue equation for the jth mode
becomes

½�ðom
j Þ

2MþK�fm
j ¼ 0 ð2Þ

where om
j and fm

j are the jth measured system natural frequency and its corresponding mode shapes, together known as
modal properties. If the natural frequency and mode shape are replaced by analytical quantities then the eigenvalue
equation is not exactly satisfied, but

½�ðoa
j Þ

2MþK�fa
j ¼ ej ð3Þ

where ej is the residual vector for the jth analytical frequency, oa
j , and the corresponding mode shape fa

j . In this setting,
given a set of measured system modal data, D, the finite element model problem is to determine the initial model that
realistically approximates the mass and stiffness matrices. Thus the predicted modal data will be as close to the measured
modal data as possible (so-called data-match). If these predictions are not sufficiently accurate, then the residual vector
will be non-zero and some of the model parameters will need to be modified, giving rise to the FEMUP.

In the next section, we introduce the proposed Bayesian inference approach in the context of finite element model
updating.

3. Bayesian inference

Bayesian inference allows one to quantify uncertainties in quantities of interest in a formal way. Bayesian inference is
often implemented in two settings; parameter estimation and model selection [4,19]. Parameter estimation is concerned
with the plausibility of a given model’s parameters based on some observed measurements and this is often carried out
using standard Bayes theorem and/or sampling methods e.g. Markov Chain Monte Carlo (MCMC) [7,19,20,27]. In contrast,
model selection deals with the mathematical hypothesis of the ability of the model(s) to approximate a particular
observed/measured quantity.
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