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This paper focuses on the parameter estimation problems of output error autoregressive systems and 
output error autoregressive moving average systems (i.e., the Box–Jenkins systems). Two recursive least 
squares parameter estimation algorithms are proposed by using the data filtering technique and the 
auxiliary model identification idea. The key is to use a linear filter to filter the input–output data. The 
proposed algorithms can identify the parameters of the system models and the noise models interactively 
and can generate more accurate parameter estimates than the auxiliary model based recursive least 
squares algorithms. Two examples are given to test the proposed algorithms.
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1. Introduction

The development of information and communication technol-
ogy has had a tremendous impact on our lives, e.g., the informa-
tion filtering, optimization and estimation techniques [1–4]. In the 
areas of signal processing and system identification, the observed 
output signals always contain disturbances from process environ-
ments [5–8]. The disturbances are of different forms (white noise 
or colored noise). It is well known that the conventional recursive 
least squares (RLS) method generates biased parameter estimates 
due to correlated noise or colored noise [9]. Thus the identification 
of output error models with colored noise has attracted many re-
search interests [10]. The bias correction methods have been con-
sidered very effective to deal with the output error models with 
colored noise [11,12]. However, the bias correction methods ignore 
the estimation of the noise models [13]. In this paper, we propose 
new identification methods for estimating the parameters of the 
system model and the noise model.

Since the noise in real life can be fitted by the autoregressive 
(AR) models, the moving average (MA) models [14,15] or the au-
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toregressive moving average (ARMA) models [16], this paper con-
siders the output error (OE) model with AR noise as shown in 
Fig. 1 (the OEAR model for short), which can be expressed as

y(t) = B(z)

A(z)
u(t) + 1

C(z)
v(t), (1)

where {u(t)} and {y(t)} are the system input and output se-
quences, respectively, {v(t)} is a white noise sequence with zero 
mean and variance σ 2, and A(z), B(z) and C(z) are polynomials in 
the unit backward shift operator z−1 [z−1 y(t) = y(t − 1)]:

A(z) := 1 + a1z−1 + a2z−2 + . . . + ana z−na ,

B(z) := b1z−1 + b2z−2 + . . . + bnb z−nb ,

C(z) := 1 + c1z−1 + c2z−2 + . . . + cnc z−nc .

Assume that the orders na , nb and nc are known, and u(t) = 0, 
y(t) = 0 and v(t) = 0 for t � 0. The coefficients ai , bi and ci
are the parameters to be estimated from the input–output data 
{u(t), y(t)}.

The model in (1) can be transformed into a new controlled au-
toregressive moving average (CARMA) form,

A(z)C(z)y(t) = B(z)C(z)u(t) + A(z)v(t),

or

A′(z)y(t) = B ′(z)u(t) + D(z)v(t), A′(z) := A(z)C(z),

B ′(z) := B(z)C(z), D(z) := A(z).
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Fig. 1. The output error autoregressive system.

This CARMA model can be identified using the recursive extended 
least squares algorithm [9,17]. However, the model in (1) only con-
tains (na + nb + nc) unknown parameters, while this new model 
contains (2na +nb + 2nc) parameters, resulting in the increment of 
the computation load of identification algorithms. Moreover, some 
extra computation is required to compute the estimates of the pa-
rameters bi and ci .

In practical industries, there exist many unmeasurable variables 
in systems, such as the state variables [18] and the inner variables 
or the noise-free outputs. In general, one can use the outputs of 
an appropriate auxiliary model to replace the unmeasurable vari-
ables for identification. The auxiliary model identification idea can 
be applied to linear systems containing the unknown variables in 
the information vectors [19,20], nonlinear systems, dual-rate/mul-
tirate systems [21,22], and missing-data systems or systems with 
scarce measurements [23,24]. Recently, Chen et al. presented a 
data filtering based least squares iterative algorithm for parame-
ter identification of output error autoregressive systems [25].

On the basis of the work in [25–27], this paper investigates the 
recursive identification problems of the OEAR models and the Box–
Jenkins models using the filtering technique. Two-stage recursive 
least squares algorithms are proposed through filtering the input–
output data. Since the OEAR models and the Box–Jenkins models 
involve the system models (the OE part) and the noise models (the 
AR or ARMA part), the proposed algorithms can generate the pa-
rameter estimates of the system models and the noise models.

The rest of this paper is organized as follows. Section 2 gives 
the auxiliary model identification algorithm for OEAR systems. Sec-
tion 3 analyzes the convergence analysis of the auxiliary model 
based recursive generalized least squares algorithm. Section 4 de-
rives a parameter estimation algorithm based on the data filtering 
technique. Section 5 gives simply a filtering based identification al-
gorithm for Box–Jenkins systems. Section 6 provides two examples 
to show the effectiveness of the proposed algorithms. Finally, some 
concluding remarks are given in Section 7.

2. The auxiliary model based recursive generalized least squares 
algorithm

Define the noise-free output x(t) and the noise term w(t) as

x(t) := B(z)

A(z)
u(t), w(t) := 1

C(z)
v(t), (2)

and the parameter vector ϑ and the information vector φ(t) as

ϑ :=
[

θ
c

]
∈R

n, n := na + nb + nc,

θ := [a1,a2, . . . ,ana ,b1,b2, . . . ,bnb ]T ∈R
na+nb ,

c := [c1, c2, . . . , cnc ]T ∈ R
nc ,

φ(t) :=
[

ϕ(t)
ψ(t)

]
∈R

n,

ϕ(t) := [−x(t − 1),−x(t − 2), . . . ,−x(t − na), u(t − 1),

u(t − 2), . . . , u(t − nb)
]T ∈R

na+nb ,

ψ(t) := [−w(t − 1),−w(t − 2), . . . ,−w(t − nc)
]T ∈R

nc .

Fig. 2. The output error auto-regressive systems with the auxiliary model.

Eqs. (2) and (1) can be written as

x(t) = [
1 − A(z)

]
x(t) + B(z)u(t)

= ϕT(t)θ, (3)

w(t) = [
1 − C(z)

]
w(t) + v(t)

= ψT(t)c + v(t), (4)

y(t) = x(t) + w(t)

= φT(t)ϑ + v(t). (5)

A difficulty of identification is that φ(t) contains the unknown in-
ner term x(t − i) and the unmeasurable noise term w(t − i). An 
effective method of estimating the parameter vector ϑ is to em-
ploy the auxiliary model identification idea in [19,28] as shown in 
Fig. 2, where xa(t) := Ba(z)

Aa(z) u(t) is the output of the auxiliary model. 
The unknown term x(t − i) is replaced with the output xa(t − i) of 
the auxiliary model and the unknown noise term w(t − i) is re-
placed with its estimate ŵ(t − i) for parameter estimation. Define

φ̂(t) :=
[

ϕa(t)
ψ̂(t)

]
∈R

n,

ϕa(t) := [−xa(t − 1),−xa(t − 2), . . . ,−xa(t − na),

u(t − 1), u(t − 2), . . . , u(t − nb)
]T ∈R

na+nb ,

ψ̂(t) := [−ŵ(t − 1),−ŵ(t − 2), . . . ,−ŵ(t − nc)
]T ∈R

nc .

Referring to the methods in [19,28], we can obtain the auxiliary 
model based recursive generalized least squares (AM-RGLS) algo-
rithm for generating the estimate ϑ̂(t) of ϑ :

ϑ̂(t) = ϑ̂(t − 1) + L(t)
[

y(t) − φ̂
T
(t)ϑ̂(t − 1)

]
, (6)

L(t) = P (t)φ̂(t) = P (t − 1)φ̂(t)
[
1 + φ̂

T
(t)P (t − 1)φ̂(t)

]−1
, (7)

P (t) = P (t − 1) − L(t)LT(t)
[
1 + φ̂

T
(t)P (t − 1)φ̂(t)

]
,

P (0) = p0 I , (8)

φ̂(t) =
[

ϕa(t)
ψ̂(t)

]
, (9)

ϕa(t) = [−xa(t − 1),−xa(t − 2), . . . ,−xa(t − na),

u(t − 1), u(t − 2), . . . , u(t − nb)
]T

, (10)

ψ̂(t) = [−ŵ(t − 1),−ŵ(t − 2), . . . ,−ŵ(t − nc)
]T

, (11)

xa(t) = ϕT
a(t)θ̂(t), (12)

ŵ(t) = y(t) − xa(t), (13)

ϑ̂(t) = [
θ̂

T
(t), ĉ1(t), ĉ2(t), . . . , ĉnc (t)

]T
, (14)

θ̂(t) = [
â1(t), â2(t), . . . , âna (t), b̂1(t), b̂2(t), . . . , b̂nb (t)

]T
. (15)
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